Portable Electrochemical System and Platform with Point-of-Care Determination of Urine Albumin-to-Creatinine Ratio to Evaluate Chronic Kidney Disease and Cardiorenal Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Manufacture of the Customised Electrode
2.3. Design of the Proposed Electrochemical System
2.4. Preparation of the UACR Sensor
2.5. Characterisations of the UACR Sensing System and Platform
- (i)
- The Alb sensor pretreatment was performed with CV analyses (potential range: 0–1.0 V versus Ag/AgCl; scan rate: 100 mV s−1; cycles: 10), after which W1 is represented as SPE(W1)|CNT-ABTS(CV).
- (ii)
- After the Alb sensor pretreatment, magnetic stirring was initiated at 200 rpm for 30 min. The Crn sensor (W2) performed amperometric detection for 400 s at 1.05 V versus Ag/AgCl in the stirred sample. The current density at the end of the amperometric detection was recorded, and the Crn concentration was then calculated using the calibration curve of SPE(W2)|CNT-ABTS|Nafion with the developed app.
- (iii)
- By the end of the 30 min magnetic stirring, CV analyses (potential range: 0–1.0 V versus Ag/AgCl; scan rate: 100 mV s−1; cycles: 10) were applied on the SPE(W1)|CNT-ABTS(CV). The Alb concentration was then calculated using the calibration curve of SPE(W1)|CNT-ABTS(CV) with the developed app.
- (iv)
- The UACR results calculated from the values of Crn and Alb and the corresponding risk levels by the clinically relevant CKD diagnostic criteria were displayed on the customised user app.
3. Results and Discussion
3.1. Alb and Crn Reaction Setting
3.2. Voltammetric Alb Detection by SPE(W1)|CNT-ABTS
3.3. Amperometric Crn Detection by SPE(W2)|CNT-ABTS|Nafion
3.4. Application of the Proposed Electrochemical System and Platform to UACR Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Asociacion Informacion Enfermedades Renales Geneticas; European Kidney Patients’ Federation (EKPF). RICORS2040: The need for collaborative research in chronic kidney disease. Clin. Kidney J. 2022, 15, 372–387. [Google Scholar] [CrossRef]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef]
- Chu, C.D.; Chen, M.H.; McCulloch, C.E.; Powe, N.R.; Estrella, M.M.; Shlipak, M.G.; Tuot, D.S. Patient Awareness of CKD: A Systematic Review and Meta-analysis of Patient-Oriented Questions and Study Setting. Kidney Med. 2021, 3, 576–585.e1. [Google Scholar] [CrossRef]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.-Y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension 2003, 42, 1050–1065. [Google Scholar] [CrossRef]
- Christofides, E.A.; Desai, N. Optimal Early Diagnosis and Monitoring of Diabetic Kidney Disease in Type 2 Diabetes Mellitus: Addressing the Barriers to Albuminuria Testing. J. Prim. Care Community Health 2021, 12, 21501327211003683. [Google Scholar] [CrossRef] [PubMed]
- Butt, L.; Unnersjö-Jess, D.; Höhne, M.; Edwards, A.; Binz-Lotter, J.; Reilly, D.; Hahnfeldt, R.; Ziegler, V.; Fremter, K.; Rinschen, M.M.; et al. A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2020, 2, 461–474. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Gaspari, F.; Perna, A.; Remuzzi, G. Cross sectional longitudinal study of spot morning urine protein: Creatinine ratio, 24 hour urine protein excretion rate, glomerular filtration rate, and end stage renal failure in chronic renal disease in patients without diabetes. BMJ 1998, 316, 504–509. [Google Scholar] [CrossRef]
- Flores-Guerrero, J.L.; Muñoz-Morales, A.; Narea-Jimenez, F.; Perez-Fuentes, R.; Torres-Rasgado, E.; Ruiz-Vivanco, G.; Gonzalez-Viveros, N.; Castro-Ramos, J. Novel Assessment of Urinary Albumin Excretion in Type 2 Diabetes Patients by Raman Spectroscopy. Diagnostics 2020, 10, 141. [Google Scholar] [CrossRef]
- Cowell, C.; Rogers, S.; Silink, M. First morning urinary albumin concentration is a good predictor of 24-hour urinary albumin excretion in children with Type I (insulin-dependent) diabetes. Diabetologia 1986, 29, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Fagerstrom, P.; Sallsten, G.; Akerstrom, M.; Haraldsson, B.; Barregard, L. Urinary albumin excretion in healthy adults: A cross sectional study of 24-hour versus timed overnight samples and impact of GFR and other personal characteristics. BMC Nephrol. 2015, 16, 8. [Google Scholar] [CrossRef] [PubMed]
- Vart, P.; Scheven, L.; Heerspink, H.J.L.; de Jong, P.E.; de Zeeuw, D.; Gansevoort, R.T.; Group, P.S.; Investigators, R. Urine albumin-creatinine ratio versus albumin excretion for albuminuria staging: A prospective longitudinal cohort study. Am. J. Kidney Dis. 2016, 67, 70–78. [Google Scholar] [CrossRef]
- Levey, A.S.; Gansevoort, R.T.; Coresh, J.; Inker, L.A.; Heerspink, H.L.; Grams, M.E.; Greene, T.; Tighiouart, H.; Matsushita, K.; Ballew, S.H. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: A scientific workshop sponsored by the National Kidney Foundation in collaboration with the US Food and Drug Administration and European Medicines Agency. Am. J. Kidney Dis. 2020, 75, 84–104. [Google Scholar] [CrossRef]
- Hong, J.W.; Ku, C.R.; Noh, J.H.; Ko, K.S.; Rhee, B.D.; Kim, D.J. Association between low-grade albuminuria and cardiovascular risk in Korean adults: The 2011-2012 Korea National Health and Nutrition Examination Survey. PLoS ONE 2015, 10, e0118866. [Google Scholar] [CrossRef] [PubMed]
- Ruilope, L.M.; Ortiz, A.; Lucia, A.; Miranda, B.; Alvarez-Llamas, G.; Barderas, M.G.; Volpe, M.; Ruiz-Hurtado, G.; Pitt, B. Prevention of cardiorenal damage: Importance of albuminuria. Eur. Heart J. 2023, 44, 1112–1123. [Google Scholar] [CrossRef]
- Horn, J.W.; Romundstad, S.; Ellekjaer, H.; Janszky, I.; Horn, J. Low grade albuminuria as a risk factor for subtypes of stroke-the HUNT Study in Norway. BMC Neurol. 2020, 20, 170. [Google Scholar] [CrossRef]
- Omoruyi, F.O.; Mustafa, G.M.; Okorodudu, A.O.; Petersen, J.R. Evaluation of the performance of urine albumin, creatinine and albumin–creatinine ratio assay on two POCT analyzers relative to a central laboratory method. Clin. Chim. Acta 2012, 413, 625–629. [Google Scholar] [CrossRef]
- Park, J.I.; Baek, H.; Kim, B.R.; Jung, H.H. Comparison of urine dipstick and albumin:creatinine ratio for chronic kidney disease screening: A population-based study. PLoS ONE 2017, 12, e0171106. [Google Scholar] [CrossRef]
- Stradolini, F.; Tuoheti, A.; Kilic, T.; Ntella, S.L.; Tamburrano, N.; Huang, Z.; De Micheli, G.; Demarchi, D.; Carrara, S. An IoT Solution for Online Monitoring of Anesthetics in Human Serum Based on an Integrated Fluidic Bioelectronic System. IEEE TBioCAS 2018, 12, 1056–1064. [Google Scholar] [CrossRef]
- Dudala, S.; Dubey, S.K.; Javed, A.; Ganguly, A.; Kapur, S.; Goel, S. Portable Chemiluminescence Detection Platform and Its Application in Creatinine Detection. IEEE Sens. J. 2022, 22, 7177–7184. [Google Scholar] [CrossRef]
- Lin, S.Y.; Lin, C.Y. Electrochemically-functionalized CNT/ABTS nanozyme enabling sensitive and selective voltammetric detection of microalbuminuria. Anal. Chim. Acta 2022, 1197, 339517. [Google Scholar] [CrossRef] [PubMed]
- Ciou, D.S.; Wu, P.H.; Huang, Y.C.; Yang, M.C.; Lee, S.Y.; Lin, C.Y. Colorimetric and amperometric detection of urine creatinine based on the ABTS radical cation modified electrode. Sens. Actuator B 2020, 314, 9. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, H.Y.; Ciou, D.S.; Liao, Z.X.; Huang, P.W.; Hsieh, Y.T.; Wei, Y.C.; Lin, C.Y.; Shieh, M.D.; Chen, J.Y. A Portable Wireless Urine Detection System With Power-Efficient Electrochemical Readout ASIC and ABTS-CNT Biosensor for UACR Detection. IEEE TBioCAS 2021, 15, 537–548. [Google Scholar] [CrossRef]
- Bell, D. Beware the low urine pH—The major cause of the increased prevalence of nephrolithiasis in the patient with type 2 diabetes. Diabetes Obes. Metab. 2012, 14, 299–303. [Google Scholar] [CrossRef]
- D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Peters, J.; Wight, J.; de Zeeuw, D.; El Nahas, M. A Population-Based Screening for Microalbuminuria Among Relatives of CKD Patients: The Kidney Evaluation and Awareness Program in Sheffield (KEAPS). Am. J. Kidney Dis. 2008, 52, 434–443. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Leech, D.; Paice, M.G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Et Biophys. Acta (BBA) General. Subj. 1998, 1379, 381–390. [Google Scholar] [CrossRef]
- Abou-Elela, A. Epidemiology, pathophysiology, and management of uric acid urolithiasis: A narrative review. J. Adv. Res. 2017, 8, 513–527. [Google Scholar] [CrossRef]
- Putnam, D.F. Composition and Concentrative Properties of Human Urine; NASA: Washington, DC, USA, 1971. [Google Scholar]
- D’Elia, J.A.; Bayliss, G.P.; Weinrauch, L.A. The Diabetic Cardiorenal Nexus. Int. J. Mol. Sci. 2022, 23, 7351. [Google Scholar] [CrossRef] [PubMed]
- Marassi, M.; Fadini, G.P. The cardio-renal-metabolic connection: A review of the evidence. Cardiovasc. Diabetol. 2023, 22, 195. [Google Scholar] [CrossRef]
- Zoccali, C.; Zannad, F. Refocusing cardio-renal problems: The cardiovascular-kidney-metabolic syndrome and the chronic cardiovascular-kidney disorder. Nephrol. Dial. Transplant. 2024, 39, 1378–1380. [Google Scholar] [CrossRef]
- Chaiyo, S.; Kalcher, K.; Apilux, A.; Chailapakul, O.; Siangproh, W. A novel paper-based colorimetry device for the determination of the albumin to creatinine ratio. Analyst 2018, 143, 5453–5460. [Google Scholar] [CrossRef]
- Hiraoka, R.; Kuwahara, K.; Wen, Y.C.; Yen, T.H.; Hiruta, Y.; Cheng, C.M.; Citterio, D. Paper-Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation. ACS Sens. 2020, 5, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Liu, G.; Xu, G.; Li, X.; Shi, Z.; Cheng, C.; Xu, D.; Lu, Y.; Liu, Q. Battery-free and wireless tag for in situ sensing of urinary albumin/creatinine ratio (ACR) for the assessment of albuminuria. Sens. Actuators B 2022, 367, 132050. [Google Scholar] [CrossRef]
- Chen, S.J.; Tseng, C.C.; Huang, K.H.; Chang, Y.C.; Fu, L.M. Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors 2022, 12, 496. [Google Scholar] [CrossRef]
Gender | Age (Years) | Number | <10 mg/g | 10–30 mg/g | 30–300 mg/g | >300 mg/g |
---|---|---|---|---|---|---|
Male | All | 19 | 5 | 4 | 7 | 3 |
<60 | 1 | 1 | 0 | 0 | 0 | |
60–80 | 14 | 3 | 3 | 5 | 3 | |
>80 | 4 | 1 | 1 | 2 | 0 | |
Female | All | 11 | 0 | 3 | 6 | 2 |
<60 | 1 | 0 | 1 | 0 | 0 | |
60–80 | 5 | 0 | 1 | 2 | 2 | |
>80 | 5 | 0 | 1 | 4 | 0 |
Sensor Configuration | Method | Analysis Time (min) | Linear Range (mg/dL) | LoD (mg/dL) | O.T. a (°C) | S.T. b (°C) | S.N. c | Reference d |
---|---|---|---|---|---|---|---|---|
BG e/JR f/PAD g s | CM h | 1 | 10–350 (Alb) 10–350 (Crn) | 7.1 (Alb) 5.1 (Crn) | 50 | N.A. i | 3 | [35] |
CAS j −Pd2+ complex/drawing-PAD g s | CM h | 15 | 0-100 (Alb) 0-300 (Crn) | N.A. i N.A. i | R.T. k | N.A. i | 15 | [36] |
Carbon|SA l /NFC m | EC n | 3 | 1–200 (Alb) 1–30 (Crn) | 0.63 (Alb) 0.93 (Crn) | R.T. k | N.A. i | 5(A.U. o) | [37] |
BCG p dye /PA q /sliding PAD g | CM h | 3 | 0.75–10 (Alb) 10–300 (Crn) | 0.5 (Alb) 5.0 (Crn) | 40 | −15 | 23 | [38] |
SPE|CNT-ABTS(CV) SPE|CNT–ABTS|Nafion | EC n | 30 | 0.08-19.20 (Alb) 1.67-58.62 (Crn) | 0.02 (Alb) 0.62 (Crn) | R.T. k | R.T. k | 30 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-Y.; Ciou, D.-S.; Lee, H.-Y.; Chen, J.-Y.; Wei, Y.-C.; Shieh, M.-D. Portable Electrochemical System and Platform with Point-of-Care Determination of Urine Albumin-to-Creatinine Ratio to Evaluate Chronic Kidney Disease and Cardiorenal Syndrome. Biosensors 2024, 14, 463. https://doi.org/10.3390/bios14100463
Lee S-Y, Ciou D-S, Lee H-Y, Chen J-Y, Wei Y-C, Shieh M-D. Portable Electrochemical System and Platform with Point-of-Care Determination of Urine Albumin-to-Creatinine Ratio to Evaluate Chronic Kidney Disease and Cardiorenal Syndrome. Biosensors. 2024; 14(10):463. https://doi.org/10.3390/bios14100463
Chicago/Turabian StyleLee, Shuenn-Yuh, Ding-Siang Ciou, Hao-Yun Lee, Ju-Yi Chen, Yi-Chieh Wei, and Meng-Dar Shieh. 2024. "Portable Electrochemical System and Platform with Point-of-Care Determination of Urine Albumin-to-Creatinine Ratio to Evaluate Chronic Kidney Disease and Cardiorenal Syndrome" Biosensors 14, no. 10: 463. https://doi.org/10.3390/bios14100463
APA StyleLee, S. -Y., Ciou, D. -S., Lee, H. -Y., Chen, J. -Y., Wei, Y. -C., & Shieh, M. -D. (2024). Portable Electrochemical System and Platform with Point-of-Care Determination of Urine Albumin-to-Creatinine Ratio to Evaluate Chronic Kidney Disease and Cardiorenal Syndrome. Biosensors, 14(10), 463. https://doi.org/10.3390/bios14100463