Microfluidic Detection Platform for Determination of Ractopamine in Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Microfluidic RAC Chip
2.2. Experimental Process and Smart Analysis Device
2.3. Preparation of Reagent and Standard Solution
2.4. Sample Pretreatment
3. Results and Discussion
3.1. Optimization of Operating Conditions
3.2. Calibration of Microfluidic Detection System
3.3. Practical RAC Measurement Performance of Microfluidic System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boler, D.D.; Shreck, A.L.; Faulkner, D.B.; Killefer, J.; McKeith, F.K.; Homm, J.W.; Scanga, J.A. Effect of Ractopamine Hydrochloride (Optaflexx) Dose on Live Animal Performance, Carcass Characteristics and Tenderness in Early Weaned Beef Steers. Meat Sci. 2012, 92, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Abbas, K.; Raza, A.; Vasquez, R.D.; Roldan, M.J.M.; Malhotra, N.; Huang, J.-C.; Buenafe, O.E.M.; Chen, K.H.-C.; Liang, S.-S.; Hsiao, C.-D. Ractopamine at the Center of Decades-Long Scientific and Legal Disputes: A Lesson on Benefits, Safety Issues, and Conflicts. Biomolecules 2022, 12, 1342. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-L.; Deng, J.-F.; Chen, Y.; Chu, W.-L.; Hung, D.-Z.; Yang, C.-C. Late Diagnosis of an Outbreak of Leanness-Enhancing Agent–Related Food Poisoning. Am. J. Emerg. Med. 2013, 31, 1501–1503. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Peng, Y.; Zhao, X.; Chen, Y. Rapid Detection of Clenbuterol Residues in Pork Using Enhanced Raman Spectroscopy. Biosensors 2022, 12, 859. [Google Scholar] [CrossRef]
- Abhikha Sherlin, V.; Stanley, M.M.; Wang, S.-F.; Sriram, B.; Baby, J.N.; George, M. Nanoengineered Disposable Sensor Fabricated with Lanthanum Stannate Nanocrystallite for Detecting Animal Feed Additive: Ractopamine. Food Chem. 2023, 423, 136268. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.-Y.; Sebastian, N.; Alharthi, S.S.; Al-Saidi, H.M.; Kumar, D. Nanomolar Electrochemical Detection of Feed Additive Ractopamine in Meat Samples Using Spinel Zinc Ferrite Decorated 3-Dimensional Graphene Nanosheets to Combat Food Fraud in Livestock Industries. Food Chem. 2024, 437, 137868. [Google Scholar] [CrossRef]
- Keerthi, M.; Kumar Panda, A.; Wang, Y.-H.; Liu, X.; He, J.-H.; Chung, R.-J. Titanium Nanoparticle Anchored Functionalized MWCNTs for Electrochemical Detection of Ractopamine in Porcine Samples with Ultrahigh Sensitivity. Food Chem. 2022, 378, 132083. [Google Scholar] [CrossRef]
- Kordasht, H.K.; Saadati, A.; Hasanzadeh, M. A Flexible Paper Based Electrochemical Portable Biosensor towards Recognition of Ractopamine as Animal Feed Additive: Low Cost Diagnostic Tool towards Food Analysis Using Aptasensor Technology. Food Chem. 2022, 373, 131411. [Google Scholar] [CrossRef]
- Li, K.; Cui, J.; Yang, Q.; Wang, S.; Luo, R.; Rodas-Gonzalez, A.; Wei, P.; Liu, L. A New Sensor for the Rapid Electrochemical Detection of Ractopamine in Meats with High Sensitivity. Food Chem. 2023, 405, 134791. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, S.; Wu, C.; Feng, Y.; Zhao, D.; Wang, X.; Bai, Z. In-Tube Solid Phase Microextraction and Determination of Ractopamine in Pork Muscle Samples Using Amide Group Modified Polysaccharide-Silica Hybrid Monolith as Sorbent Prior to HPLC Analysis. Food Chem. 2021, 355, 129662. [Google Scholar] [CrossRef]
- Gao, H.; Chen, M.; Gao, H.; Gao, S.; Liu, X.; Du, R.; Wang, F.; Wang, Y.; Wan, L. Determination of Ractopamine Residue in Animal Derived Foods Using Electromembrane Extraction Followed by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2022, 1675, 463179. [Google Scholar] [CrossRef] [PubMed]
- Shelver, W.L.; McGarvey, A.M.; Holthusen, J.E.; Young, J.M.; Byrd, C.J.; Smith, D.J. Comparison of Immunoassay and LC-Tandem Mass Spectrometry Analyses of Ractopamine in Hog Oral Fluid. Food Addit. Contam. Part A 2024, 41, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, M.; Zhang, L.; Yang, M.; Deng, L.; Li, X.; Sun, Q. Development of a Mutton Powder Certified Reference Material for the Analysis of Ractopamine. J. Food Compos. Anal. 2023, 115, 104935. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Pham, T.N.M.; Doan, T.T.; Ta, T.T.; Sáiz, J.; Nguyen, T.Q.H.; Hauser, P.C.; Mai, T.D. Simple Semi-Automated Portable Capillary Electrophoresis Instrument with Contactless Conductivity Detection for the Determination of β-Agonists in Pharmaceutical and Pig-Feed Samples. J. Chromatogr. A 2014, 1360, 305–311. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, J.; Liu, X.; Lan, J.; Gao, X.; Ma, Y.; Li, M.; Li, J. Determination of Ractopamine in Pork Using a Magnetic Molecularly Imprinted Polymer as Adsorbent Followed by HPLC. Food Chem. 2016, 201, 72–79. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsu, J.-Y.; Chen, C.-S.; Chen, Y.-T.; Liao, P.-C. Development of a Lateral Flow Immunoassays-Based Method for the Screening of Ractopamine in Foods and Evaluation of the Optimal Strategy in Combination of Screening and Confirmatory Tests. J. Food Drug Anal. 2023, 31, 289–301. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Li, T.; Wang, H.; Du, P.; Wang, W.; Tan, T.; Liu, Y.; Wang, S.; Ma, Y.; Wang, Y.; et al. Glucometer-Based Biosensor for the Determination of Ractopamine in Animal-Derived Foods Using Rolling Circle Amplification. Microchim. Acta 2023, 190, 121. [Google Scholar] [CrossRef]
- Wu, T.; Li, J.; Zheng, S.; Yu, Q.; Qi, K.; Shao, Y.; Xiao, R. Magnetic Nanotag-Based Colorimetric/SERS Dual-Readout Immunochromatography for Ultrasensitive Detection of Clenbuterol Hydrochloride and Ractopamine in Food Samples. Biosensors 2022, 12, 709. [Google Scholar] [CrossRef]
- Xiong, J.; Qin, L.; Zhang, H.; Zhang, S.; He, S.; Xu, Y.; Zhang, L.; Wang, Z.; Jiang, H. Sensitive and Simultaneous Detection of Ractopamine and Salbutamol Using Multiplex Lateral Flow Immunoassay Based on Polyethyleneimine-Mediated SiO2@QDs Nanocomposites: Comparison and Application. Microchem. J. 2022, 181, 107730. [Google Scholar] [CrossRef]
- Chen, L.; Ghiasvand, A.; Paull, B. Applications of Thread-Based Microfluidics: Approaches and Options for Detection. Trends Anal. Chem. 2023, 161, 117001. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Lu, S.-Y.; Chen, S.-J.; Wang, J.-M.; Fu, L.-M.; Wu, Y.-H. Microfluidic Aptasensor POC Device for Determination of Whole Blood Potassium. Anal. Chim. Acta 2022, 1203, 339722. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Gupta, V.; Kumar, N.; Arun, R.K. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Mol. Biotechnol. 2024, 66, 378–401. [Google Scholar] [CrossRef] [PubMed]
- Lunelli, L.; Germanis, M.; Vanzetti, L.; Potrich, C. Different Strategies for the Microfluidic Purification of Antibiotics from Food: A Comparative Study. Biosensors 2023, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Tseng, C.C.; Yu, C.X.; Chen, T.L.; Huang, K.H.; Fu, L.M.; Wu, P.H. Rapid Microfluidic Fluorescence Detection Platform for Determination of Whole Blood Sodium. Sens. Actuators B Chem. 2024, 400, 134839. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials 2021, 11, 864. [Google Scholar] [CrossRef]
- Saravanakumar, S.M.; Cicek, P.-V. Microfluidic Mixing: A Physics-Oriented Review. Micromachines 2023, 14, 1827. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Chen, S.-J.; Lu, S.-Y.; Ko, C.-H.; Wang, J.-M.; Fu, L.-M.; Liu, Y.-H. Novel Sliding Hybrid Microchip Detection System for Determination of Whole Blood Phosphorus Concentration. Chem. Eng. J. 2021, 419, 129592. [Google Scholar] [CrossRef]
- Zolti, O.; Suganthan, B.; Ramasamy, R.P. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress. Biosensors 2023, 13, 215. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Lu, Y.; Luo, X.; Huang, Y.; Xie, T.; Pilarsky, C.; Dang, Y.; Zhang, J. Microfluidic Technology for the Isolation and Analysis of Exosomes. Micromachines 2022, 13, 1571. [Google Scholar] [CrossRef]
- Filippidou, M.-K.; Chatzandroulis, S. Microfluidic Devices for Heavy Metal Ions Detection: A Review. Micromachines 2023, 14, 1520. [Google Scholar] [CrossRef]
- Kakkar, S.; Gupta, P.; Kumar, N.; Kant, K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (POD) System. Biosensors 2023, 13, 249. [Google Scholar] [CrossRef] [PubMed]
- Mitrogiannopoulou, A.-M.; Tselepi, V.; Ellinas, K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. Micromachines 2023, 14, 986. [Google Scholar] [CrossRef]
- Khalaf, E.M.; Jabbar, H.S.; Romero-Parra, R.M.; Al-Awsi, G.R.L.; Budi, H.S.; Altamimi, A.S.; Marquez, L.A.B.; Montoya, V.G.; Mardani, A.; Yahya, G.; et al. Smartphone-Assisted Microfluidic Sensor as an Intelligent Device for On-Site Determination of Food Contaminants: Developments and Applications. Microchem. J. 2023, 190, 108692. [Google Scholar] [CrossRef]
- Vashi, A.; Sreejith, K.R.; Nguyen, N.-T. Lab-on-a-Chip Technologies for Microgravity Simulation and Space Applications. Micromachines 2023, 14, 116. [Google Scholar] [CrossRef]
- Trinh, T.N.D.; Trinh, K.T.L.; Lee, N.Y. Microfluidic Advances in Food Safety Control. Food Res. Int. 2023, 172, 113799. [Google Scholar]
- Liu, C.-C.; Ko, C.-H.; Fu, L.-M.; Jhou, Y.-L. Light-Shading Reaction Microfluidic PMMA/Paper Detection System for Detection of Cyclamate Concentration in Foods. Food Chem. 2023, 400, 134063. [Google Scholar] [CrossRef]
- Chen, K.-H.; Liu, C.-C.; Lu, S.-Y.; Chen, S.-J.; Sheu, F.; Fu, L.-M. Rapid Microfluidic Analysis Detection System for Sodium Dehydroacetate in Foods. Chem. Eng. J. 2022, 427, 131530. [Google Scholar] [CrossRef]
- Ko, C.-H.; Liu, C.-C.; Huang, K.-H.; Fu, L.-M. Finger Pump Microfluidic Detection System for Methylparaben Detection in Foods. Food Chem. 2023, 407, 135118. [Google Scholar] [CrossRef]
- Anfossi, L.; Di Nardo, F.; Russo, A.; Cavalera, S.; Giovannoli, C.; Spano, G.; Baumgartner, S.; Lauter, K.; Baggiani, C. Silver and Gold Nanoparticles as Multi-Chromatic Lateral Flow Assay Probes for the Detection of Food Allergens. Anal. Bioanal. Chem. 2019, 411, 1905–1913. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, J.; Li, H. Chromogenic Mechanisms of Colorimetric Sensors Based on Gold Nanoparticles. Biosensors 2023, 13, 801. [Google Scholar] [CrossRef]
- Li, C.-H.; Chan, M.-H.; Chang, Y.-C.; Hsiao, M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. Molecules 2023, 28, 364. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ji, W.; Fan, H.; Zhang, L.; Wan, X.; Fan, Z.; Huang, L. A Metasurface Plasmonic Analysis Platform Combined with Gold Nanoparticles for Ultrasensitive Quantitative Detection of Small Molecules. Biosensors 2023, 13, 681. [Google Scholar] [CrossRef]
- Cho, N.H.; Kim, Y.B.; Lee, Y.Y.; Im, S.W.; Kim, R.M.; Kim, J.W.; Namgung, S.D.; Lee, H.-E.; Kim, H.; Han, J.H.; et al. Adenine Oligomer Directed Synthesis of Chiral Gold Nanoparticles. Nat. Commun. 2022, 13, 3831. [Google Scholar] [CrossRef]
- Hastman, D.A.; Oh, E.; Melinger, J.S.; Green, C.M.; Thielemann, A.J.P.; Medintz, I.L.; Díaz, S.A. Smaller Gold Nanoparticles Release DNA More Efficiently During Fs Laser Pulsed Optical Heating. Small 2024, 20, 2303136. [Google Scholar] [CrossRef]
- Moon, J.-I.; Choi, E.J.; Joung, Y.; Oh, J.-W.; Joo, S.-W.; Choo, J. Development of Highly Sensitive Plasmonic Biosensors Encoded with Gold Nanoparticles on M13 Bacteriophage Networks. Sens. Actuators B Chem. 2024, 400, 134916. [Google Scholar] [CrossRef]
- Rahin Ahmed, S.; Sherazee, M.; Srinivasan, S.; Reza Rajabzadeh, A. Nanozymatic Detection of Thiocyanate through Accelerating the Growth of Ultra-Small Gold Nanoparticles/Graphene Quantum Dots Hybrids. Food Chem. 2022, 379, 132152. [Google Scholar] [CrossRef]
- Brambilla, D.; Panico, F.; Zarini, L.; Mussida, A.; Ferretti, A.M.; Aslan, M.; Chiari, M. Copolymer-Coated Gold Nanoparticles: Enhanced Stability and Customizable Functionalization for Biological Assays. Biosensors 2024, 14, 319. [Google Scholar] [CrossRef]
- Simon, T.; Shellaiah, M.; Steffi, P.; Sun, K.W.; Ko, F.-H. Development of Extremely Stable Dual Functionalized Gold Nanoparticles for Effective Colorimetric Detection of Clenbuterol and Ractopamine in Human Urine Samples. Anal. Chim. Acta 2018, 1023, 96–104. [Google Scholar] [CrossRef]
- Hong, T.-F.; Ju, W.-J.; Wu, M.-C.; Tai, C.-H.; Tsai, C.-H.; Fu, L.-M. Rapid Prototyping of PMMA Microfluidic Chips Utilizing a CO2 Laser. Microfluid. Nanofluid. 2010, 9, 1125–1133. [Google Scholar] [CrossRef]
- Sanchis-Gual, R.; Coronado-Puchau, M.; Mallah, T.; Coronado, E. Hybrid Nanostructures Based on Gold Nanoparticles and Functional Coordination Polymers: Chemistry, Physics and Applications in Biomedicine, Catalysis and Magnetism. Coord. Chem. Rev. 2023, 480, 215025. [Google Scholar] [CrossRef]
- Taiwan FDA. Method of Test for Veterinary Drug Residues in Foods—Test of Multiresidue Analysis of β-Agonists. Available online: https://www.fda.gov.tw/TC/index.aspx (accessed on 23 September 2024).
- He, L.; Su, Y.; Zeng, Z.; Liu, Y.; Huang, X. Determination of Ractopamine and Clenbuterol in Feeds by Gas Chromatography–Mass Spectrometry. Anim. Feed Sci. Technol. 2007, 132, 316–323. [Google Scholar] [CrossRef]
- Liu, H.; Liu, D.; Fang, G.; Liu, F.; Liu, C.; Yang, Y.; Wang, S. A Novel Dual-Function Molecularly Imprinted Polymer on CdTe/ZnS Quantum Dots for Highly Selective and Sensitive Determination of Ractopamine. Anal. Chim. Acta 2013, 762, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Du, J.; Pan, J.; Wang, F.; Gong, D.; Zhang, G. Colorimetric Detection of the β-Agonist Ractopamine in Animal Feed, Tissue and Urine Samples Using Gold–Silver Alloy Nanoparticles Modified with Sulfanilic Acid. Food Addit. Contam. Part A 2019, 36, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; He, D.; Wang, W.; Liu, Y.; Wu, H.; Wang, Y.; Fu, M.; Li, S. The Fabrication of Nanochain Structure of Gold Nanoparticles and Its Application in Ractopamine Sensing. Talanta 2013, 115, 992–998. [Google Scholar] [CrossRef]
- Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K. Rapid Determination of Ractopamine in Swine Urine Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2011, 59, 10023–10027. [Google Scholar] [CrossRef]
NO. | Sample | Microfluidic Detection (ppb) | NAIF Analysis (ppb) | Error (%) |
---|---|---|---|---|
1 | Muscle 1 (Cattle) | 112.5 | 118 | 4.89 |
2 | Muscle 2 (Cattle) | 3.2 | 3 | 6.67 |
3 | Liver (Cattle) | 58.2 | 57 | 2.10 |
4 | Kidney (Cattle) | 102.2 | 97 | 5.36 |
5 | Fat (Cattle) | 51.8 | 54 | 4.07 |
6 | Muscle 1 (Porcine) | 8.3 | 8 | 3.75 |
7 | Liver (Porcine) | 40.5 | 39 | 3.85 |
8 | Kidney (Porcine) | 14.6 | 15 | 2.67 |
9 | Fat (Porcine) | 13.0 | 12 | 8.33 |
10 | Muscle 2 (Porcine) | N.D. | N.D. | - |
Method | Sample Type | Detection Method | Sample Consumption | Analysis Time | Detection Range (ppb) | Price | Instrument Type | LOD (ppb) | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
GC-MS | Feed | GC | 10 mL | 26 min | 8.9~452.1 | High | Benchtop | 3.6 | 74.5~91.2 | [52] |
MWCN Modified Sensor | Pork | EC | 5 mL | 3 min | 44.6~1800 | High | Benchtop | 17.8 | 93.1~107.2 | [53] |
C3N4/Cu@ CoO/NC sensor | Pork | EC | 5 mL | 3 min | 0.005~32.73 μmol/L | High | Benchtop | 1.53 mmol/L | 96.5~102.2 | [9] |
Sulfanilic Acid Modified Nanoparticles | Pork | Colorimetric | 50 mL | 18 min | 4.5~31.6 | Low | Benchtop | 1.5 | 94.4~112.5 | [54] |
Gold Nanoparticles | Pork urine | Colorimetric | 0.01 mL | 5 min | 37.1~334.5 | Low | Benchtop | 12.4 | 98~104.4 | [55] |
LLE and LLE-SPE | Pork Urine | SERS | 1 mL | <1 min | N.D. | High | Benchtop | 355.6 | N.D. | [56] |
UPLC-ID-MS/MS | Mutton | MS/MS | 0.2 mL | <5 min | 1.0~15.0 | High | Benchtop | 0.01 | 99.0~99.9 | [13] |
Immuno-assay | Meat | Glucometer | 0.2 mL | <10 min | 0.038~5.0 | High | Handheld | 0.0158 | 79.4~106.8 | [17] |
Current Platform | Meat | Spectrum | 0.08 mL | 3 min | 5~80 | Low | Handheld | 1.0 | 91.2~107.9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.-X.; Huang, K.-H.; Chen, T.-L.; Liu, C.-C.; Fu, L.-M. Microfluidic Detection Platform for Determination of Ractopamine in Food. Biosensors 2024, 14, 462. https://doi.org/10.3390/bios14100462
Yu C-X, Huang K-H, Chen T-L, Liu C-C, Fu L-M. Microfluidic Detection Platform for Determination of Ractopamine in Food. Biosensors. 2024; 14(10):462. https://doi.org/10.3390/bios14100462
Chicago/Turabian StyleYu, Cheng-Xue, Kuan-Hsun Huang, To-Lin Chen, Chan-Chiung Liu, and Lung-Ming Fu. 2024. "Microfluidic Detection Platform for Determination of Ractopamine in Food" Biosensors 14, no. 10: 462. https://doi.org/10.3390/bios14100462
APA StyleYu, C. -X., Huang, K. -H., Chen, T. -L., Liu, C. -C., & Fu, L. -M. (2024). Microfluidic Detection Platform for Determination of Ractopamine in Food. Biosensors, 14(10), 462. https://doi.org/10.3390/bios14100462