Synergistic Effect of Composite Nickel Phosphide Nanoparticles and Carbon Fiber on the Enhancement of Salivary Enzyme-Free Glucose Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Carbon Fiber (FC) and the FC/Ni2P In Situ Composite
2.3. Synthesis of Ni2P
2.4. Materials Characterization
2.5. Modification of Glassy Carbon Electrodes (GCEs) with the Materials
2.6. Electrochemical Measurements
3. Results
3.1. Characterization of Materials
3.2. Electrocatalytic Performance toward Glucose
3.3. Electroanalytical Studies
3.4. Sensor Stability and Interfering Studies
3.5. Glucose Determination in Artificial Human Saliva
Sensor | Sensitivity (µAmM−1cm−2) | Detection Limit (µM) | Linear Range (µM) | Work Potential (V) | Real Sample | Ref. |
---|---|---|---|---|---|---|
GCE/FC/Ni2P in situ | 1050 | 0.25 | 5–208 | 0.5 | Artificial saliva | This work |
GCE /Graphene/Ni2P(MOF) | 7234 | 0.44 | 5–1400 | 0.5 | Human serum | [22] |
Carbon clothes/Ni2P Nanoarray | 7792 | 0.18 | 1–3000 | 0.5 | Human blood serum sample peach juice, and human blood | [21] |
Nickel Foam/Ni2P | 6375.1 | 0.14 | 2–937 | 0.5 | Human serum | [23] |
Ni2P/NiO/CeO2/Ni foam | 28,230 | 0.5 | 1–250 | 0.5 | Human serum | [47] |
GCE/Ni2P-Cu3P | 4700 | 0.1 | 4–5000 | 0.64 | - | [38] |
GCE/Ni5P4 | 149.6 | 0.7 | 2–5300 | 0.44 | Human serum | [36] |
GCE/NPCNT/Co2P | 338.8 | 0.88 | 2000–7000 | 0.55 | - | [37] |
Ni(OH)2/PU PU = polyurethane | 2845 | 0.32 | 10–2060 | 0.6 | Human serum | [32] |
GCE/RGO/Ni(OH)2 | 11.43 | 600 | 2–3100 | 0.6 | - | [33] |
MWCNT/NiO | 1768.8 | 2 | 10–7000 | 0.5 | Human blood | [34] |
CPE/MWCNT/NiO | 6527 | 19 | 1–14,000 | 0.5 | Human blood | [35] |
FTO/NiO | 2632.53 | 0.084 | 5–825 | 0.55 | human saliva | [13] |
Ni/CFP | 420.4 | 1 | 2–2500 | 0.6 | - | [39] |
Ni/CNF mat Carbon nanofiber | - | 0.57 | 2–5000 | 0.55 | Human serum | [40] |
Ni-MOF/RGO/CF | 852 | 0.6 | 6–2090 | 0.62 | Orange juice | [41] |
GCE/Ni-CoO/CNF | - | 0.03 | 0.25–600 | 0.5 | Human serum | [42] |
ECF/NiCo2O4 | 1947.2 | 1.5 | 5–19,175 | 0.55 | Human serum | [43] |
0.5 Ni/ECNF-5 h | 610.6 | 730 | 2000–10,000 | 0.5 | Human serum | [44] |
NiO/ECNF | 557.68 | 850 | 0.5 | |||
Co3O4/ECNF | 475.72 | 820 | 0.6 | |||
NiCo2O4/ECNF | 536.5 | 930 | 0.55 | |||
GCE /Ni(OH)2/CNF | 1038.6 | 0.76 | 1000–1200 | 0.45 | Fruit juice and Human serum | [45] |
ACF/CuO/NiO | 247 | 0.146 | 0.25–5000 | 0.55 | Human serum | [46] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogurtsova, K.; Da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Tian, K.; Prestgard, M.; Tiwari, A. A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 2014, 41, 100–118. [Google Scholar] [CrossRef]
- Nor, N.M.; Ridhuan, N.S.; Razak, K.A. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors 2022, 12, 1136. [Google Scholar] [CrossRef]
- Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T.D. Recent advances in electrochemical non-enzymatic glucose sensors—A review. Anal. Chim. Acta 2018, 1033, 1–34. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Q.; Yin, W.; Jiang, T.; Zhao, D.; Jiang, L. A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites. Sens. Actuators B Chem. 2017, 253, 1087–1095. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, C.; Gao, J.; Gui, J.; Deng, L.; Wang, Y.; Xu, R. Co3O4 nanoparticles embedded in laser-induced graphene for a flexible and highly sensitive enzyme-free glucose biosensor. Sens. Actuators B Chem. 2021, 347, 130653. [Google Scholar] [CrossRef]
- Rani, S.D.; Ramachandran, R.; Sheet, S.; Aziz, A.; Lee, Y.S.; Al-Sehemi, A.G.; Pannipara, M.; Xia, Y.; Tsai, S.-Y.; Ng, F.-L.; et al. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sens. Actuators B Chem. 2020, 312, 127886. [Google Scholar] [CrossRef]
- Qian, Q.; Hu, Q.; Li, L.; Shi, P.; Zhou, J.; Kong, J.; Zhang, X.; Sun, G.; Huang, W. Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination. Sens. Actuators B Chem. 2018, 257, 23–28. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Tong, S.; Li, Z.; Qiu, B.; Zhao, Y.; Zhang, Z. Biphasic nickel phosphide nanosheets: Self-supported electrocatalyst for sensitive and selective electrochemical H2O2 detection and its practical applications in blood and living cells. Sens. Actuators B Chem. 2018, 258, 789–795. [Google Scholar] [CrossRef]
- Lei, H.; Chen, M.; Liang, Z.; Liu, C.; Zhang, W.; Cao, R. Ni2P hollow microspheres for electrocatalytic oxygen evolution and reduction reactions. Catal. Sci. Technol. 2018, 8, 2289–2293. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, H.; Gong, J.; Al-Furjan, M.; Nie, Q. In situ growth of Ni/NiO on N-doped carbon spheres with excellent electrocatalytic performance for non-enzymatic glucose detection. J. Alloy. Compd. 2018, 748, 145–153. [Google Scholar] [CrossRef]
- Chakraborty, P.; Deka, N.; Patra, D.C.; Debnath, K.; Mondal, S.P. Salivary glucose sensing using highly sensitive and selective non-enzymatic porous NiO nanostructured electrodes. Surf. Interfaces 2021, 26, 101324. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, D.; Liu, S.; Qin, S.; Sun, X.; Wang, Z.; Qin, C.; Li, Y.; Zhou, J. Flexible porous Ni(OH)2 nanopetals sandwiches for wearable non-enzyme glucose sensors. Appl. Surf. Sci. 2021, 552, 149529. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.; Tang, X.; Zhang, Y.; He, Z.; Liu, Y.; Jiang, X.; Xiong, X. Microplasma synthesis of Ni(OH)2 nanoflake array on carbon cloth as an efficient nonenzymatic sensor for glucose. Ionics 2021, 27, 2739–2745. [Google Scholar] [CrossRef]
- Kanda, Y.; Kawanishi, K.; Tsujino, T.; Al-Otaibi, A.M.; Uemichi, Y. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions. Catalysts 2018, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Oyama, S.T.; Gott, T.; Zhao, H.; Lee, Y.-K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Ye, C.; Liu, H.; Xu, M.; Bao, S.-J. Nanosized Metal Phosphides Embedded in Nitrogen-Doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angew. Chem. 2017, 130, 1981–1985. [Google Scholar] [CrossRef]
- Streckova, M.; Mudra, E.; Orinakova, R.; Markusova-Buckova, L.; Sebek, M.; Kovalcikova, A.; Sopcak, T.; Girman, V.; Dankova, Z.; Micusik, M.; et al. Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution. Chem. Eng. J. 2016, 303, 167–181. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, K.; Huang, J.; Yang, L.; Li, S.; Wang, Z.; Xie, J.; Wang, H.; Liu, J. Ultrafine Ni2P nanoparticles embedded in one-dimensional carbon skeleton derived from metal-organic frameworks template as a high-performance anode for lithium ion battery. J. Alloy. Compd. 2019, 775, 490–497. [Google Scholar] [CrossRef]
- Chen, T.; Liu, D.; Lu, W.; Wang, K.; Du, G.; Asiri, A.M.; Sun, X. Three-Dimensional Ni2P Nanoarray: An Efficient Catalyst Electrode for Sensitive and Selective Nonenzymatic Glucose Sensing with High Specificity. Anal. Chem. 2016, 88, 7885–7889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xu, J.; Xia, J.; Zhang, F.; Wang, Z. MOF-Derived Porous Ni2P/Graphene Composites with Enhanced Electrochemical Properties for Sensitive Nonenzymatic Glucose Sensing. ACS Appl. Mater. Interfaces 2018, 10, 39151–39160. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Han, B.; Li, J.; Gao, Q.; Xia, K.; Zhou, C. Direct epitaxial growth of nickel phosphide nanosheets on nickel foam as self-support electrode for efficient non-enzymatic glucose sensing. Nanotechnology 2021, 32, 435501. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Han, F.; Li, W. Catalytic performance and deoxygenation path of methyl palmitate on Ni2P/SiO2 synthesized using the thermal decomposition of nickel hypophosphite. RSC Adv. 2016, 6, 31308–31315. [Google Scholar] [CrossRef]
- Gal, J.Y. About a synthetic saliva for in vitro studies. Talanta 2001, 53, 1103–1115. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.-Q.; Bai, Y.; Chu, W.; Sh, J. Confinement preparation of hierarchical NiO-N-doped carbon@reduced graphene oxide microspheres for high-performance non-enzymatic detection of glucose. Sens. Actuators B Chem. 2020, 309. [Google Scholar] [CrossRef]
- Ni, Y.; Xu, J.; Liang, Q.; Shao, S. Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens. Actuators B Chem. 2017, 250, 491–498. [Google Scholar] [CrossRef]
- Li, D.; Baydoun, H.; Verani, C.N.; Brock, S.L. Efficient Water Oxidation Using CoMnP Nanoparticles. J. Am. Chem. Soc. 2016, 138, 4006–4009. [Google Scholar] [CrossRef]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef] [Green Version]
- Jurysta, C.; Bulur, N.; Oguzhan, B.; Satman, I.; Yilmaz, T.M.; Malaisse, W.J.; Sener, A. Salivary Glucose Concentration and Excretion in Normal and Diabetic Subjects. J. Biomed. Biotechnol. 2009, 2009, 1–6. [Google Scholar] [CrossRef]
- Jiang, L.; Xue, Q.; Jiao, C.; Liu, H.; Zhou, Y.; Ma, H.; Yang, Q. A non-enzymatic nanoceria electrode for non-invasive glucose monitoring. Anal. Methods 2018, 10, 2151–2159. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, C.; Yang, M.; Zhou, Y.; Bi, C.; Lv, Q.; Ma, N. A facile and sensitive electrochemical sensor for non-enzymatic glucose detection based on three-dimensional flexible polyurethane sponge decorated with nickel hydroxide. Anal. Chim. Acta 2020, 1109, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, F.; Sun, Y.; Shi, Y.; Wen, Z.; Li, Z. Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: A two dimensional nanocomposite for enzyme-free glucose sensing. J. Mater. Chem. 2011, 21, 16949–16954. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Chen, J.; Jiang, L.-C.; Yu, Y.-X.; Zhang, J.-Q. A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim. Acta 2010, 168, 259–265. [Google Scholar] [CrossRef]
- Prasad, R.; Gorjizadeh, N.; Rajarao, R.; Sahajwalla, V.; Bhat, B.R. Plant root nodule like nickel-oxide–multi-walled carbon nanotube composites for non-enzymatic glucose sensors. RSC Adv. 2015, 5, 44792–44799. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Y.; Cheng, H.; Cui, Y.; Xu, Y.; Yang, T.; Zhang, D.; Xu, X. Porous flower-like Ni5P4 for non-enzymatic electrochemical detection of glucose. Mater. Chem. Phys. 2019, 240, 122202. [Google Scholar] [CrossRef]
- Das, D.; Das, A.; Reghunath, M.; Nanda, K.K. Phosphine-free avenue to Co2P nanoparticle encapsulated N,P co-doped CNTs: A novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chem. 2017, 19, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Li, J.; Cao, J.; Li, X.; Feng, X.; Zhang, J.; Yang, Y. High performance of non-enzymatic glucose biosensors based on the design of microstructure of Ni2P/Cu3P nanocomposites. Appl. Surf. Sci. 2022, 593. [Google Scholar] [CrossRef]
- Liu, Y.; Teng, H.; Hou, H.; You, T. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens. Bioelectron. 2009, 24, 3329–3334. [Google Scholar] [CrossRef]
- Adabi, M.; Adabi, M. Electrodeposition of nickel on electrospun carbon nanofiber mat electrode for electrochemical sensing of glucose. J. Dispers. Sci. Technol. 2019, 42, 262–269. [Google Scholar] [CrossRef]
- Dong, S.; Niu, H.; Sun, L.; Zhang, S.; Wu, D.; Yang, Z.; Xiang, M. Highly dense Ni-MOF nanoflake arrays supported on conductive graphene/carbon fiber substrate as flexible microelectrode for electrochemical sensing of glucose. J. Electroanal. Chem. 2022, 911, 116219. [Google Scholar] [CrossRef]
- Mei, Q.; Fu, R.; Ding, Y.; Li, L.; Wang, A.; Duan, D.; Ye, D. Electrospinning of highly dispersed Ni/CoO carbon nanofiber and its application in glucose electrochemical sensor. J. Electroanal. Chem. 2019, 847, 113075. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Yang, J.; Liu, G.; Li, J.; Guo, L.; Chen, S.; Guo, Q. NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 2018, 258, 920–928. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Mazinani, S.; Sharif, F.; Bazargan, A.M. Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers decorated with Ni/Co Particles via Oxidation. Appl. Biochem. Biotechnol. 2022, 194, 2542–2564. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, S.-M.; Lu, X.-J. Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel(II) hydroxide nanoplates and carbon nanofibers. Microchim. Acta 2013, 181, 365–372. [Google Scholar] [CrossRef]
- Saravanan, J.; Pannipara, M.; Al-Sehemi, A.G.; Talebi, S.; Periasamy, V.; Shah, S.S.; Aziz, A.; Kumar, G.G. Flower-like CuO/NiO nanostructures decorated activated carbon nanofiber membranes for flexible, sensitive, and selective enzyme-free glucose detection. J. Mater. Sci. Mater. Electron. 2021, 32, 24775–24789. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; Yu, C.; Cui, J.; Yu, D.; Wu, Y. Construction of high sensitivity non-enzymatic glucose sensor based on three-dimensiona nickel foam supported Ni2P/NiO/CeO2 nanoflake arrays. IOP Conf. Series Mater. Sci. Eng. 2020, 733, 012019. [Google Scholar] [CrossRef]
Sensor | Sensitivity µAmM−1cm−2 | LOD µM | LOQ µM | Concentration Range/µM |
---|---|---|---|---|
GCE/FC/Ni2P in situ | 1005 | 0.24 | 0.73 | 19.8–185 |
GCE/FC/Ni2P ex situ | 818 | 1.24 µM | 3.75 | 19.8–185 |
GCE/Ni2P | 424 | 1.34 µM | 4.07 | 19.8–185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, T.P.; Butto-Miranda, N.; Neira-Carrillo, A.; Bollo, S.; Ruíz-León, D. Synergistic Effect of Composite Nickel Phosphide Nanoparticles and Carbon Fiber on the Enhancement of Salivary Enzyme-Free Glucose Sensing. Biosensors 2023, 13, 49. https://doi.org/10.3390/bios13010049
Brito TP, Butto-Miranda N, Neira-Carrillo A, Bollo S, Ruíz-León D. Synergistic Effect of Composite Nickel Phosphide Nanoparticles and Carbon Fiber on the Enhancement of Salivary Enzyme-Free Glucose Sensing. Biosensors. 2023; 13(1):49. https://doi.org/10.3390/bios13010049
Chicago/Turabian StyleBrito, Tania P., Nicole Butto-Miranda, Andrónico Neira-Carrillo, Soledad Bollo, and Domingo Ruíz-León. 2023. "Synergistic Effect of Composite Nickel Phosphide Nanoparticles and Carbon Fiber on the Enhancement of Salivary Enzyme-Free Glucose Sensing" Biosensors 13, no. 1: 49. https://doi.org/10.3390/bios13010049
APA StyleBrito, T. P., Butto-Miranda, N., Neira-Carrillo, A., Bollo, S., & Ruíz-León, D. (2023). Synergistic Effect of Composite Nickel Phosphide Nanoparticles and Carbon Fiber on the Enhancement of Salivary Enzyme-Free Glucose Sensing. Biosensors, 13(1), 49. https://doi.org/10.3390/bios13010049