A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Effects of Assisting Gas
4.2. Fabricating Silicon Nanowires
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Ma, Y.; Qi, L. High-Performance Photodetectors Based on Organometal Halide Perovskite Nanonets. Adv. Funct. Mater. 2017, 27, 1603653. [Google Scholar] [CrossRef]
- Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z.M. Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 2016, 11, 704–737. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef]
- Dong, J.J.; Zhang, X.W.; Yin, Z.G.; Zhang, S.G.; Wang, J.X.; Tan, H.R.; Gao, Y.; Si, F.T.; Gao, H.L. Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template. Acs Appl. Mater. Interfaces 2011, 3, 4388–4395. [Google Scholar] [CrossRef]
- García Núñez, C.; Navaraj, W.T.; Liu, F.; Shakthivel, D.; Dahiya, R. Large-Area Self-Assembly of Silica Microspheres/Nanospheres by Temperature-Assisted Dip-Coating. Acs Appl. Mater. Interfaces 2018, 10, 3058–3068. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.; Khunsin, W.; Osiak, M.; Blömker, M.; Torres, C.M.S.; O’Dwyer, C. Ordered 2D Colloidal Photonic Crystals on Gold Substrates by Surfactant-Assisted Fast-Rate Dip Coating. Small 2014, 10, 1895–1901. [Google Scholar] [CrossRef]
- Mihi, A.; Ocaña, M.; Míguez, H. Oriented Colloidal-Crystal Thin Films by Spin-Coating Microspheres Dispersed in Volatile Media. Adv. Mater. 2006, 18, 2244–2249. [Google Scholar] [CrossRef]
- Vogel, N.; Goerres, S.; Landfester, K.; Weiss, C.K. A Convenient Method to Produce Close- and Non-close-Packed Monolayers using Direct Assembly at the Air-Water Interface and Subsequent Plasma-Induced Size Reduction. Macromol. Chem. Phys. 2011, 212, 1719–1734. [Google Scholar] [CrossRef]
- Weekes, S.M.; Ogrin, F.Y.; Murray, W.A.; Keatley, P.S. Macroscopic Arrays of Magnetic Nanostructures from Self-Assembled Nanosphere Templates. Langmuir 2007, 23, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fang, H.; Zhu, J. Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density. Adv. Mater. 2007, 19, 744–748. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-Assisted Chemical Etching of Silicon: A Review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef]
- Lu, Z.; Namboodiri, A.; Collinson, M.M. Self-Supporting Nanopore Membranes with Controlled Pore Size and Shape. Acs Nano 2008, 2, 993–999. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Zhang, C.; Tuan, C.; Chen, X.; Gao, J.; Wong, C. Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching. Nano Lett. 2017, 17, 1014–1019. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Li, L.; Tuan, C.; Wu, F.; Chen, X.; Gao, J.; Ding, Y.; Wong, C. Fabricating and Controlling Silicon Zigzag Nanowires by Diffusion-Controlled Metal-Assisted Chemical Etching Method. Nano Lett. 2017, 17, 4304–4310. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Li, L.; Tuan, C.; Chen, X.; Gao, J.; He, Y.; Wong, C. Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires. Nanoscale Res. Lett. 2017, 12, 185. [Google Scholar] [CrossRef]
- Pavlenko, M.; Coy, E.L.; Jancelewicz, M.; Załęski, K.; Smyntyna, V.; Jurga, S.; Iatsunskyi, I. Enhancement of optical and mechanical properties of Si nanopillars by ALD TiO 2 coating. RSC Adv. 2016, 6, 97070–97076. [Google Scholar] [CrossRef]
- Pavlenko, M.; Siuzdak, K.; Coy, E.; Jancelewicz, M.; Jurga, S.; Iatsunskyi, I. Silicon/TiO2 core-shell nanopillar photoanodes for enhanced photoelectrochemical water oxidation. Int. J. Hydrog. Energy 2017, 42, 30076–30085. [Google Scholar] [CrossRef]
- Yang, S.; Cai, W.; Kong, L.; Lei, Y. Surface Nanometer-Scale Patterning in Realizing Large-Scale Ordered Arrays of Metallic Nanoshells with Well-Defined Structures and Controllable Properties. Adv. Funct. Mater. 2010, 20, 2527–2533. [Google Scholar] [CrossRef]
- Peng, K.; Zhang, M.; Lu, A.; Wong, N.; Zhang, R.; Lee, S. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 2007, 90, 163123. [Google Scholar] [CrossRef]
- Fenollosa, R.; Meseguer, F. Non-Close-Packed Artificial Opals. Adv. Mater. 2003, 15, 1282–1285. [Google Scholar] [CrossRef]
- Jaber, S.; Karg, M.; Morfa, A.; Mulvaney, P. 2D assembly of gold–PNIPAM core–shell nanocrystals. Phys. Chem. Chem. Phys. 2011, 13, 5576–5578. [Google Scholar] [CrossRef]
- Hanarp, P.; Sutherland, D.S.; Gold, J.; Kasemo, B. Control of nanoparticle film structure for colloidal lithography. Colloids Surf. A Physicochem. Eng. Asp. 2003, 214, 23–36. [Google Scholar] [CrossRef]
- Yan, L.; Wang, K.; Wu, J.; Ye, L. Hydrophobicity of Model Surfaces with Loosely Packed Polystyrene Spheres after Plasma Etching. J. Phys. Chem. B 2006, 110, 11241–11246. [Google Scholar] [CrossRef]
- Haginoya, C.; Ishibashi, M.; Koike, K. Nanostructure array fabrication with a size-controllable natural lithography. Appl. Phys. Lett. 1997, 71, 2934–2936. [Google Scholar] [CrossRef]
- Plettl, A.; Enderle, F.; Saitner, M.; Manzke, A.; Pfahler, C.; Wiedemann, S.; Ziemann, P. Non-Close-Packed Crystals from Self-Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography. Adv. Funct. Mater. 2009, 19, 3279–3284. [Google Scholar] [CrossRef]
- Valsesia, A.; Meziani, T.; Bretagnol, F.; Colpo, P.; Ceccone, G.; Rossi, F. Plasma assisted production of chemical nano-patterns by nano-sphere lithography: Application to bio-interfaces. J. Phys. D Appl. Phys. 2007, 40, 2341–2347. [Google Scholar] [CrossRef]
- Li, L.; Zhai, T.; Zeng, H.; Fang, X.; Bando, Y.; Golberg, D. Polystyrene sphere-assisted one-dimensional nanostructure arrays: Synthesis and applications. J. Mater. Chem. 2010, 21, 40–56. [Google Scholar] [CrossRef]
- Brombacher, C.; Saitner, M.; Pfahler, C.; Plettl, A.; Ziemann, P.; Makarov, D.; Assmann, D.; Siekman, M.H.; Abelmann, L.; Albrecht, M. Tailoring particle arrays by isotropic plasma etching: An approach towards percolated perpendicular media. Nanotechnology 2009, 20, 105304. [Google Scholar] [CrossRef]
- Akinoglu, E.M.; Morfa, A.J.; Giersig, M. Understanding Anisotropic Plasma Etching of Two-Dimensional Polystyrene Opals for Advanced Materials Fabrication. Langmuir 2014, 30, 12354–12361. [Google Scholar] [CrossRef]
- Vogel, N.; Weiss, C.K.; Landfester, K. From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography. Soft Matter 2012, 8, 4044–4061. [Google Scholar] [CrossRef]
- Köhler, M. Etching in Microsystem Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Banks, B.A.; Miller, S.K.R.; Kneubel, C.A. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers; NASA: Washington, DC, USA, 2014.
- Li, X.; Bi, Z.; Chang, D.; Li, Z.; Wang, S.; Xu, X.; Xu, Y.; Lu, W.; Zhu, A.; Wang, Y. Modulating effects of the low-frequency source on ion energy distributions in a dual frequency capacitively coupled plasma. Appl. Phys. Lett. 2008, 93, 31504. [Google Scholar] [CrossRef]
- Flamm, D.L. Frequency effects in plasma etching. J. Vac. Sci. Technol. A 1986, 4, 729–738. [Google Scholar] [CrossRef]
- Chen, F.F. Collisional, magnetic, and nonlinear skin effect in radio-frequency plasmas. Phys. Plasmas 2001, 8, 3008–3017. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Yoo, S.J.; Kim, D.C.; Joung, M.; Kim, J.S.; Lee, B.J.; Oh, K.S.; Kim, K.U.; Kim, Y.H.; Kim, Y.W.; Choi, S.W.; et al. Hyperthermal neutral beam sources for material processing (invited). Rev. Sci. Instrum. 2008, 79, 02C301. [Google Scholar] [CrossRef]
- Kikani, P.; Desai, B.; Prajapati, S.; Arun, P.; Chauhan, N.; Nema, S.K. Comparison of low and atmospheric pressure air plasma treatment of polyethylene. Surf. Eng. 2013, 29, 211–221. [Google Scholar] [CrossRef]
- Plummer, E.W. Frontiers in Surface and Interface Science; Gulf Professional Publishing: Houston, TX, USA, 2002. [Google Scholar]
- Li, X.; Bohn, P.W. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 2000, 77, 2572–2574. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Zhao, H.; Fu, H.; Wang, Y.; Huo, C.; Peng, K. Oxidant Concentration Modulated Metal/Silicon Interface Electrical Field Mediates Metal-Assisted Chemical Etching of Silicon. Adv. Mater. Interfaces 2018, 5, 1801132. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Li, L.; Zhou, S.; Chen, X.; Gao, J.; Zhao, N.; Wong, C. Hybrid Anodic and Metal-Assisted Chemical Etching Method Enabling Fabrication of Silicon Carbide Nanowires. Small 2019, 15, 1803898. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shi, D.; Chen, Y.; Chen, X.; Gao, J.; Zhao, N.; Wong, C.-P. A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres. Nanomaterials 2019, 9, 605. https://doi.org/10.3390/nano9040605
Chen Y, Shi D, Chen Y, Chen X, Gao J, Zhao N, Wong C-P. A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres. Nanomaterials. 2019; 9(4):605. https://doi.org/10.3390/nano9040605
Chicago/Turabian StyleChen, Yun, Dachuang Shi, Yanhui Chen, Xun Chen, Jian Gao, Ni Zhao, and Ching-Ping Wong. 2019. "A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres" Nanomaterials 9, no. 4: 605. https://doi.org/10.3390/nano9040605
APA StyleChen, Y., Shi, D., Chen, Y., Chen, X., Gao, J., Zhao, N., & Wong, C.-P. (2019). A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres. Nanomaterials, 9(4), 605. https://doi.org/10.3390/nano9040605