Straightforward Immobilization of Phosphonic Acids and Phosphoric Acid Esters on Mesoporous Silica and Their Application in an Asymmetric Aldol Reaction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredricksen, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based Mesoporous Organic–Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous Materials for Drug Delivery. Angew. Chem. Int. Ed. 2007, 46, 7548–7558. [Google Scholar] [CrossRef] [PubMed]
- Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Towards Multifunctional, Targeted Drug Delivery Systems Using Mesoporous Silica Nanoparticles—Opportunities & Challenges. Nanoscale 2010, 2, 1870–1883. [Google Scholar] [PubMed]
- Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthcare Mater. 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Liang, X.; Sun, M.; Jiang, S. Development of Silica-based Stationary Phases for High-performance Liquid Chromatography. Anal. Bioanal. Chem. 2011, 399, 3307–3322. [Google Scholar] [CrossRef]
- Triantafillidis, C.; Elsaesser, M.S.; Hüsing, N. Chemical Phase Separation Strategies towards Silica Monoliths with Hierarchical Porosity. Chem. Soc. Rev. 2013, 42, 3833–3846. [Google Scholar] [CrossRef]
- Wagner, T.; Krotzky, S.; Weiß, A.; Sauerwald, T.; Kohl, C.D.; Roggenbuck, J.; Tiemann, M. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica. Sensors 2011, 11, 3135–3144. [Google Scholar] [CrossRef]
- Cattani-Scholz, A. Functional Organophosphonate Interfaces for Nanotechnology: A Review. ACS Appl. Mater. Interfaces 2017, 9, 25643–25655. [Google Scholar] [CrossRef]
- Schmidt, W. Solid Catalysts on the Nanoscale: Design of Complex Morphologies and Pore Structures. Chem. Cat. Chem. 2009, 1, 53–67. [Google Scholar] [CrossRef]
- Tüysüz, H.; Schüth, F. Ordered Mesoporous Materials as Catalysts. Adv. Catal. 2012, 55, 127–239. [Google Scholar]
- Soundiressane, T.; Selvakumar, S.; Ménage, S.; Hamelin, O.; Fontecave, M.; Singh, A.P. Ru- and Fe-based n,n′-Bis(2-pyridylmethyl)-n-methyl-(1s,2s)-1,2-cyclohexanediamine Complexes Immobilised on Mesoporous MCM-41: Synthesis, Characterization and Catalytic Applications. J. Mol. Catal. A 2007, 270, 132–143. [Google Scholar] [CrossRef]
- Van Der Voort, P.; Esquivel, D.; de Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F.J. Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem. Soc. Rev. 2013, 42, 3913–3955. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.D.; Raja, R.; Thomas, J.M.; Johnson, B.F.G.; Lewis, D.W.; Rouzaud, J.; Harris, K.D.M. Enhancing the Enantioselectivity of Novel Homogeneous Organometallic Hydrogenation Catalysts. Angew. Chem. Int. Ed. 2003, 42, 4326–4331. [Google Scholar] [CrossRef] [PubMed]
- Kamitori, Y. A Convenient and Facile Synthesis of 3-Trifluoromethyl−1,2,5-oxadiazoles with the Use of Silica Gel as an Effective Catalyst. Heterocycles 1999, 51, 627–630. [Google Scholar] [CrossRef]
- Dash, S.; Mishra, S.; Patel, S.; Mishra, B.K. Organically Modified Silica: Synthesis and Applications due to its Surface Interaction with Organic Molecules. Adv. Interface Colloid Sci. 2008, 140, 77–94. [Google Scholar] [CrossRef]
- Hair, M.L.; Hertl, W. Reactions of Chlorosilanes with Silica Surfaces. J. Phys. Chem. 1969, 73, 2372–2378. [Google Scholar] [CrossRef]
- Guerrero, G.; Alauzun, J.G.; Granier, M.; Laurencin, D.; Mutin, P.H. Phosphonate Coupling Molecules for the Control of Surface/Interface Properties and the Synthesis of Nanomaterials. Dalton Trans. 2013, 42, 12569–12585. [Google Scholar] [CrossRef]
- Pujari, S.P.; Scheres, L.; Marcelis, A.T.M.; Zuilhof, H. Covalent Surface Modification of Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 6322–6356. [Google Scholar] [CrossRef]
- Hanson, E.L.; Schwartz, J.; Nickel, B.; Koch, N.; Danisman, M.F. Bonding Self-assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon. J. Am. Chem. Soc. 2003, 125, 16074–16080. [Google Scholar] [CrossRef] [PubMed]
- Vega, A.; Thissen, P.; Chabal, Y.J. Environment-controlled Tethering by Aggregation and Growth of Phosphonic Acid Monolayers on Silicon Oxide. Langmuir 2012, 28, 8046–8051. [Google Scholar] [CrossRef] [PubMed]
- Alphazan, T.; Mathey, L.; Schwarzländer, M.; Lin, T.-H.; Rossini, A.J.; Wischert, R.; Enyedi, V.; Fontaine, H.; Veillerot, M.; Lesage, A.; et al. Monolayer Doping of Silicon through Grafting a Tailored Molecular Phosphorus Precursor onto Oxide-passivated Silicon Surfaces. Chem. Mater. 2016, 28, 3634–3640. [Google Scholar] [CrossRef]
- Longo, R.C.; Cho, K.; Hohmann, S.; Thissen, P. Mechanism of Phosphorus Transport through Silicon Oxide during Phosphonic Acid Monolayer Doping. J. Phys. Chem. C 2018, 122, 10088–10095. [Google Scholar] [CrossRef]
- Hofmann, M.; Cattani-Scholz, A.; Mallorqui, A.D.; Sharp, I.D.; Morral, A.F.; Codinachs, L.M. Development and Characterization of EIS Structures Based on SiO2 Micropillars and Pores before and after their Functionalization with Phosphonate Films. Phys. Status Solidi A 2011, 208, 1333–1339. [Google Scholar] [CrossRef]
- Lukes, I.; Borbaruah, M.; Quin, L.D. Direct Reaction of Phosphorus Acids with Hydroxy of a Silanol and on the Silica Gel Surface. J. Am. Chem. Soc. 1994, 116, 1737–1741. [Google Scholar] [CrossRef]
- Davidowski, S.K.; Holland, G.P. Solid-state NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles. Langmuir 2016, 32, 3253–3261. [Google Scholar] [CrossRef] [PubMed]
- Raster, P.; Schmidt, A.; Rambow, M.; Kuzmanovic, N.; König, B.; Hilt, G. Immobilisation of Photoswitchable Diarylcyclohexenes Synthesised via Cobalt-mediated Diels–Alder Reaction. Chem. Commun. 2014, 50, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- Calolgero, S.; Lanari, D.; Urrú, M.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Supported l-Proline on Zirconium Phosphates Methyl and/or Phenyl Phosphonates as Heterogeneous Organocatalysts for Direct Asymmetric Aldol Addition. J. Catal. 2011, 282, 112–119. [Google Scholar]
- Smått, J.-H.; Schunk, S.M.; Lindén, M. Versatile Double-Templating Synthesis Route to Silica Monoliths Exhibiting a Multimodal Hierarchical Porosity. Chem. Mater. 2003, 15, 2354–2361. [Google Scholar] [CrossRef]
- Herzfeld, J.; Berger, A.E. Sideband Intensities in NMR Spectra of Samples Spinning at the Magic Angle. J. Chem. Phys. 1980, 73, 6021–6030. [Google Scholar] [CrossRef]
- Eichele, K. Herzfeld-Berger Analysis, User Manual; University of Tübingen: Tubingen, Germany, 2015. [Google Scholar]
- Hara, K.; Akahane, S.; Wiench, J.W.; Burgin, B.R.; Ishito, N.; Lin, V.S.-Y.; Fukuoka, A.; Pruski, M. Selective and Efficient Silylation of Mesoporous Silica: A Quantitative Assessment of Synthetic Strategies by Solid-State NMR. J. Phys. Chem. C 2012, 116, 7083–7090. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characterisitcs Group Frequencies: Tables and Charts; John Wiley & Sons: Weinheim, Germany, 2001. [Google Scholar]
- Thissen, P.; Peixoto, T.; Longo, R.C.; Peng, W.; Schmidt, W.G.; Cho, K.; Chabal, Y.J. Activation of Surface Hydroxyl Groups by Modification of H-terminated Si (111) Surfaces. J. Am. Chem. Soc. 2012, 134, 8869–8874. [Google Scholar] [CrossRef] [PubMed]
- Barrio, L.; Campos-Martín, J.M.; Fierro, J.L.G. Spectroscopic and DFT Study of Tungstic Acid Peroxocomplexes. J. Phys. Chem. A 2007, 111, 2166–2171. [Google Scholar] [CrossRef] [PubMed]
- List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones with Aldedydes. J. Am. Chem. Soc. 2005, 125, 9285–9289. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, M.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Synthesis of Zirconium Phosphonate Supported l-Proline as an Effective Organocatalyst for Direct Asymmetric Aldol Addition. Eur. J. Org. Chem. 2014, 1716–1726. [Google Scholar] [CrossRef]
- Ricci, A.; Bernardi, L.; Gioia, C.; Vierucci, S.; Robitzer, M.; Quignard, F. Chitosan Aerogel: A Recyclable, Heterogeneous Organocatalyst for the Asymmetric Direct Aldol Reaction in Water. Chem. Commun. 2010, 46, 6288–6290. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.G.; Juaristi, E. Asymmetric Aldol Reaction Organocatalyzed by (s)-Proline-containing Dipeptides: Improved Stereoinduction under Solvent-free Conditions. J. Org. Chem. 2011, 76, 1464–1467. [Google Scholar] [CrossRef]
- Wu, C.; Fu, X.; Ma, X.; Li, S.; Li, C. Threonine-Surfactant Organocatalysts for the Highly Diastereo- and Enantioselective Direct anti-Mannich Reactions of Hydroxyacetone. Tetrahedron Lett. 2010, 51, 5775–5777. [Google Scholar] [CrossRef]
- Bahmanyar, S.; Houk, K.N. The Origin of Stereoselectivity in Proline-catalyzed Intramolecular Aldol Reactions. J. Am. Chem. Soc. 2001, 123, 12911–12912. [Google Scholar] [CrossRef]
Silica | ABET[a] (m2·g−1) | V[b] (mL·g−1) | d[c] (nm) |
---|---|---|---|
Monolith | 206 | 1.46 | 30.5 |
LiChrosorb SI 100 | 276 | 1.04 | 14.0 |
SBA-15 | 629 | 0.75 | 6.3 |
MCM-41 | 1279 | 0.80 | 3.7 |
Silica | Loading (mmol·gSiO2−1) |
---|---|
Monolith | 0.777 |
LiChrosorb SI 100 | 0.562 |
SBA-15 | 0.508 |
Silica | Loading (mmol·gSiO2−1) | |||
---|---|---|---|---|
PPA (1) | AMP (2) | DPA (3) | DBP (4) | |
Monolith | 0.527 | 2.489 | - | - |
LiChrosorb SI 100@ | 0.742 | 1.035 | 0.636 | 0.470 |
SBA-15 | 0.561 | 0.999 | 0.568 | 0.422 |
MCM-41 | 0.010 | 1.049 | 0.466 | 0.264 |
Silica | Chemical shift/ppm | |||
---|---|---|---|---|
Signal 1 | Signal 2 | Signal 3 | Signal 4 | |
Monolith | - | 18.7 | 9.3 | −0.4 |
SBA−15 | - | 18.4 | 9.0 | - |
MCM 41 | 19.5 | 18.5 | 9.7 | - |
Catalyst | Loading (mmol·gSiO2−1) | Yield [a] (%) | dr[b] (%) | ee[c] (%) | |
---|---|---|---|---|---|
anti/syn | anti | syn | |||
Pure 5 | - | 62 | 93/7 | 96 | n.a. |
5@LiChrosorb | 1.234 | 53 | 95/5 | 97 | 12 |
5@SBA−15 | 1.162 | 47 | 92/8 | 97 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinberger, C.; Heckel, T.; Schnippering, P.; Schmitz, M.; Guo, A.; Keil, W.; Marsmann, H.C.; Schmidt, C.; Tiemann, M.; Wilhelm, R. Straightforward Immobilization of Phosphonic Acids and Phosphoric Acid Esters on Mesoporous Silica and Their Application in an Asymmetric Aldol Reaction. Nanomaterials 2019, 9, 249. https://doi.org/10.3390/nano9020249
Weinberger C, Heckel T, Schnippering P, Schmitz M, Guo A, Keil W, Marsmann HC, Schmidt C, Tiemann M, Wilhelm R. Straightforward Immobilization of Phosphonic Acids and Phosphoric Acid Esters on Mesoporous Silica and Their Application in an Asymmetric Aldol Reaction. Nanomaterials. 2019; 9(2):249. https://doi.org/10.3390/nano9020249
Chicago/Turabian StyleWeinberger, Christian, Tatjana Heckel, Patrick Schnippering, Markus Schmitz, Anpeng Guo, Waldemar Keil, Heinrich C. Marsmann, Claudia Schmidt, Michael Tiemann, and René Wilhelm. 2019. "Straightforward Immobilization of Phosphonic Acids and Phosphoric Acid Esters on Mesoporous Silica and Their Application in an Asymmetric Aldol Reaction" Nanomaterials 9, no. 2: 249. https://doi.org/10.3390/nano9020249
APA StyleWeinberger, C., Heckel, T., Schnippering, P., Schmitz, M., Guo, A., Keil, W., Marsmann, H. C., Schmidt, C., Tiemann, M., & Wilhelm, R. (2019). Straightforward Immobilization of Phosphonic Acids and Phosphoric Acid Esters on Mesoporous Silica and Their Application in an Asymmetric Aldol Reaction. Nanomaterials, 9(2), 249. https://doi.org/10.3390/nano9020249