Composite Magnetic Photocatalyst Bi5O7I/MnxZn1−xFe2O4: Hydrothermal-Roasting Preparation and Excellent Photocatalytic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bi5O7I/MnxZn1−xFe2O4
2.2. Characterization
2.3. Photocatalytic Evaluation
3. Results and Discussion
3.1. Structure Characteristics
3.2. Absorption Light Ability and Magnetic Properties
3.3. Photocatalytic Activity
3.4. Stability and Recycling Ability
3.5. Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Sharma, S.K.; Sharma, G. Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: Elucidating the photocatalytic mechanism under different light sources. J. Hazard. Mater. 2019, 364, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Shi, W.L.; Li, M.Y.; Wen, H. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep. Purific. Technol. 2019, 210, 608–615. [Google Scholar] [CrossRef]
- Li, S.J.; Mo, L.Y.; Liu, Y.P.; Zhang, H.; Ge, Y.; Zhou, Y. Ag2CO3 Decorating BiOCOOH Microspheres with Enhanced Full-Spectrum Photocatalytic Activity for the Degradation of Toxic Pollutants. Nanomaterials. 2018, 8, 914. [Google Scholar] [CrossRef] [PubMed]
- Mishra, Y.K.; Adelung, R. ZnO tetrapod materials for functional applications. Mater. Today 2018, 21, 631–651. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, M.; Nigam, S.; Shree, S.; Avasthi, D.K.; Adelung, R.; Srivastava, S.K.; Mishra, Y.K. ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem. Eng. J. 2019, 358, 540–551. [Google Scholar] [CrossRef]
- Grottrup, J.; Schutt, F.; Smazna, D.; Lupan, O.; Adelung, R.; Mishra, Y.K. Porous ceramics based on hybrid inorganic tetrapodal networks for efficient photocatalysis and water purification. Ceram. Int. 2017, 43, 14915–14922. [Google Scholar] [CrossRef]
- Huang, D.; Long, Y.J.; Luo, L.J.; Li, L.; Zhang, S.; Wang, L.; Jiang, F. Synthesis of N-doped Bi2O3 and its excellent visible light photocatalytic performance for the degradation of 17 beta-estradiol. Sci. Adv. Mater. 2019, 11, 105–111. [Google Scholar] [CrossRef]
- Oppong, S.O.B.; Opoku, F.; Govender, P.P. Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: The role of Gd3+ ion. Appl. Catal. B Environ. 2019, 243, 106–120. [Google Scholar] [CrossRef]
- Han, G.; Li, D.Y.; Zheng, Y.F. Enhanced visible-light-responsive photocatalytic properties of Bi2MoO6-BiOCl nanoplate composites. J. Nanosci. Nanotechnol. 2018, 18, 5575–5581. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, G.; Ren, H. Synthesis of BiVO4 with surface heterojunction for enhancing photocatalytic activity by low temperature aqueous method. Mater. Lett. 2018, 229, 308–311. [Google Scholar] [CrossRef]
- Wang, A.J.; Zhang, J.; Zhao, W.; Zhu, W.; Zhong, Q. Porphyrin decorated Bi2O2CO3 nanocomposites with efficient difunctional properties of photocatalysis and optical nonlinearity. J. Alloy. Compd. 2018, 748, 929–937. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Yuan, J. A facile pechini method to synthesize novel Bi12SiO20-Bi2SiO5 heterostructure photocatalysts with enhanced visible light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2018, 29, 4503–4508. [Google Scholar] [CrossRef]
- Ketterer, J.; Keller, E.; Kramer, V. Crystal-structure of bismuth oxide iodide, beta-Bi5O7I. Z. Kristallorgr. 1985, 172, 63–70. [Google Scholar] [CrossRef]
- Peng, Y.; Mao, Y.G.; Liu, T. Synthesis of one-dimensional Bi2O3-Bi5O7I heterojunctions with high interface quality. Crystengcomm. 2018, 20, 4771–4780. [Google Scholar] [CrossRef]
- Liang, C.; Niu, C.G.; Zhang, L.; Wen, X.J.; Yang, S.F.; Guo, H.; Zeng, G.M. Construction of 2D heterojunction system with enhanced photocatalytic performance: Plasmonic Bi and reduced graphene oxide co-modified Bi5O7I with high-speed charge transfer channels. J. Hazard. Mater. 2019, 361, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.L. Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT Calculations. J. Comput. Chem. 2009, 30, 1882–1891. [Google Scholar] [CrossRef] [PubMed]
- Sangita, D.; Tilak, D.; Soumendu, D. Impact of bi-axial strain on the structural, electronic and optical properties of photo-catalytic bulk bismuth oxyhalides. Phys. Chem. Chem. Phys. 2017, 20, 103–111. [Google Scholar]
- Yang, N.; Lv, X.; Zhong, S.T.; Qian, D.; Han, S.; Li, D.; Geng, X.; Fang, H.; Jiang, W. Preparation of Z-scheme AgI/Bi5O7I plate with high visible light photocatalytic performance by phase transition and morphological transformation of BiOI microspheres at room temperature. Dalton Trans. 2018, 47, 11420–11428. [Google Scholar] [CrossRef]
- Fu, H.; Pan, C.; Yao, W.; Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 2005, 109, 22432–22439. [Google Scholar] [CrossRef]
- Fu, J.-Y.; Chen, L.-W.; Dai, Y.-M.; Liu, F.-Y.; Huang, S.-T.; Chen, C.-C. BiOmFn/BiOxIy/GO Nanocomposites: Synthesis, characterization, and photocatalytic activity. Mol. Catal. 2018, 455, 214–223. [Google Scholar] [CrossRef]
- Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Sun, S.M.; Wang, W.Z.; Zhang, L.; Zhou, L.; Yin, W.; Shang, M. Visible light-induced efficient contaminant removal by Bi5O7I. Environ. Sci. Technol. 2009, 43, 2005–2010. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; He, Z.; Su, J.; Tang, B.; Liu, Y. Enhanced photocatalytic performance of Z-scheme Cu2O/Bi5O7I nanocomposites. J. Mater. Sci. Mater. Electron. 2018, 29, 15271–15281. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, L.; Chang, C.; Fu, Y.; Chu, X. Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal method and itsphotocatalytic degradation of bisphenol A. Catal. Commun. 2013, 37, 92–95. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhu, G.Q.; Gao, J.Z.; Zhu, R.; Hojamberdiev, M.; Wang, C.; Wei, X.; Liu, P. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation. Appl. Catal. B Environ. 2017, 205, 421–432. [Google Scholar] [CrossRef]
- Chen, X.J.; Dai, Y.Z.; Wang, X.Y.; Guo, J.; Liu, T.H.; Li, F.F. Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2,4-dichlorophenol under visible light irradiation. J. Hazard. Mater. 2015, 292, 9–18. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Long, Y.J.; Li, L.; Wang, L.; Zhang, S.; Jiang, F. Room Temperature Synthesis of BiOI/Bi5O7I p-n Heterojunction with Enhanced Photocatalytic Activity for 17 alpha-Ethynylestradiol. ChemistrySelect 2018, 3, 8095–8105. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhu, G.Q.; Gao, J.Z; Zhu, R.; Hojamberdiev, M.; Wang, C.; Liu, P. Superior-performance spherical-like Eu-doped Bi5O7I photocatalysts for the removal of organic pollutants under visible-light irradiation. J. Mater. Sci. Mater. Electron. 2017, 28, 11034–11045. [Google Scholar] [CrossRef]
- Geng, X.Q.; Chen, S.; Lv, X.; Jiang, W.; Wang, T. Synthesis of g-C3N4/Bi5O7I microspheres with enhanced photocatalytic activity under visible light. Appl. Surf. Sci. 2018, 462, 18–28. [Google Scholar] [CrossRef]
- Kermani, M.; Kakavandi, B.; Farzadkia, M. Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: Optimization, toxicity and degradation pathway studies. J. Clean. Prod. 2018, 192, 597–607. [Google Scholar] [CrossRef]
- Gimenes, R.; Baldissera, M.R.; da Silva, M.R.A.; da Silveira, C.A.; Soares, D.A.W.; Perazolli, L.A.; da Silva, M.R.; Zaghete, M.A. Structural and magnetic characterization of MnxZn1−xFe2O4 (x = 0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method. Ceram. Int. 2012, 38, 741–746. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Xu, L.J.; Liu, C.L. Preparation and characterization of composite magnetic photocatalyst MnxZn1−xFe2O4/beta-Bi2O3. RSC Adv. 2015, 5, 79997–80004. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, W.; Fang, J. Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies. Appl. Surf. Sci. 2012, 259, 441–447. [Google Scholar] [CrossRef]
- Xie, T.P.; Li, H.; Liu, C.L.; Yang, J.; Xiao, T.; Xu, L. Magnetic Photocatalyst BiVO4/Mn-Zn ferrite/Reduced Graphene Oxide: Synthesis Strategy and Its Highly Photocatalytic Activity. Nanomaterials 2018, 8, 380. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Wu, J.; Ma, T.J.; Wang, P.; Cui, C.; Ma, D. Synthesis of C@Bi2MoO6 nanocomposites with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 2017, 403, 141–150. [Google Scholar] [CrossRef]
- Chang, M.J.; Cui, W.N.; Wang, H.; Liu, J.; Li, H.L.; Du, H.L.; Peng, L.G. Recoverable magnetic CoFe2O4/BiOI nanofibers for efficient visible light photocatalysis. Colloid Surf. A 2019, 562, 127–135. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L. J.; Liu, C.L.; Xie, T. Preparation and photocatalytic activity of porous Bi5O7I nanosheets. Appl. Surf. Sci. 2014, 319, 265–271. [Google Scholar] [CrossRef]
- Chen, L.; Huang, R. Room-temperature synthesis of flower-like BiOX (X = Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity. Inorg. Chem. 2013, 52, 11118–11125. [Google Scholar] [CrossRef]
- Babu, V.J.; Bhavatharinib, R.S.R. Electrospun BiOI nano/microtectonic plate-like structure synthesis and UV-light assisted photodegradation of ARS dye. RSC Adv. 2014, 4, 19251–19256. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xu, L.; Liu, C.; Lu, Y.; Feng, Q.; Wu, T.; Wang, R. Composite Magnetic Photocatalyst Bi5O7I/MnxZn1−xFe2O4: Hydrothermal-Roasting Preparation and Excellent Photocatalytic Activity. Nanomaterials 2019, 9, 118. https://doi.org/10.3390/nano9010118
Wang H, Xu L, Liu C, Lu Y, Feng Q, Wu T, Wang R. Composite Magnetic Photocatalyst Bi5O7I/MnxZn1−xFe2O4: Hydrothermal-Roasting Preparation and Excellent Photocatalytic Activity. Nanomaterials. 2019; 9(1):118. https://doi.org/10.3390/nano9010118
Chicago/Turabian StyleWang, Hailong, Longjun Xu, Chenglun Liu, Yuan Lu, Qi Feng, Tingzeng Wu, and Ruiqi Wang. 2019. "Composite Magnetic Photocatalyst Bi5O7I/MnxZn1−xFe2O4: Hydrothermal-Roasting Preparation and Excellent Photocatalytic Activity" Nanomaterials 9, no. 1: 118. https://doi.org/10.3390/nano9010118
APA StyleWang, H., Xu, L., Liu, C., Lu, Y., Feng, Q., Wu, T., & Wang, R. (2019). Composite Magnetic Photocatalyst Bi5O7I/MnxZn1−xFe2O4: Hydrothermal-Roasting Preparation and Excellent Photocatalytic Activity. Nanomaterials, 9(1), 118. https://doi.org/10.3390/nano9010118