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Abstract: A new composite magnetic photocatalyst, Bi5O7I/MnxZn1−xFe2O4, prepared by a
hydrothermal-roasting method was studied. The photocatalytic properties of Bi5O7I/MnxZn1−xFe2O4

were evaluated by degradation of Rhodamine B (RhB) under simulated sunlight irradiation, and
the structures and properties were characterized by X-ray diffraction (XRD), Fourier-transform
infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), ultraviolet-visible light (UV-Vis) diffuse reflectance spectra (DRS), and a vibrating sample
magnetometer (VSM). The results indicated that Bi5O7I/MnxZn1−xFe2O4 was an orthorhombic
crystal, which was similar to that observed for Bi5O7I. Bi5O7I/MnxZn1−xFe2O4 consisted of
irregularly shaped nanosheets that were 40–60 nm thick. The most probable pore size was 24.1 nm
and the specific surface area was 7.07 m2/g. Bi5O7I/MnxZn1−xFe2O4 could absorb both ultraviolet
and visible light, and the energy gap value was 3.22 eV. The saturation magnetization, coercivity
and residual magnetization of Bi5O7I/MnxZn1−xFe2O4 were 3.9 emu/g, 126.6 Oe, and 0.7 emu/g
respectively, which could help Bi5O7I/MnxZn1−xFe2O4 be separated and recycled from wastewater
under the action of an external magnetic field. The recycling experiments revealed that the average
recovery rate of the photocatalyst was 90.1%, and the photocatalytic activity was still more than 81.1%
after five cycles.
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1. Introduction

In recent years, with the progress of nanotechnology and the application of photocatalytic technology
in environmental pollution treatment [1–3], lots of semiconducting metal-oxide nanostructures were
widely used for water purification due to their great photocatalytic performance [4,5]. Grottrup [6]
applied Bi for doping ZnO, which significantly enhanced its ability in the photocatalytic degradation
of methylene blue. Huang [7] indicated that the rate constant of degradation of 17 β-estradiol over
N-doped Bi2O3 was 6.3 times that obtained over Bi2O3. Oppong [8] pointed out that the reason for
the better photocatalytic performance of Gd–TiO2–graphene oxide (GO) nanocomposites compared
to pure TiO2 was because GO sheets and Gd3+ ions are excellent co-catalysts and their presence
promotes the reaction sites. Currently, bismuth-based nanometer semiconductors are one of the
research hotspots in the field of photocatalytic materials due to their unique electronic structure and
excellent absorption ability of ultraviolet and visible light [9–12]. Bi5O7I, an oxygen-rich bismuth-based
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nanometer semiconductor [13–15], is composed of a Bi 6p orbital at the bottom of the conduction band
and Bi 6s, O 2p, and I 5p orbitals at the top of the valence band [16,17]. The Bi 6s and O 2p orbitals
can form several dispersed hybrid valence bands, while the I 5p orbital disperses the valence bands
further [18,19]. Consequently, the above results accelerate the migration of photo-generated holes and
promote the occurrence of oxidation reactions [20,21]. Sun et al. thought that the Bi5O7 and I sections
form a unique hierarchical structure successively along the c-axis orderly. As an accelerator for the
separation of photo-generated electron–hole pairs, the permanent electrostatic field between the layers
can improve the photocatalytic activity of Bi5O7I [22]. Xia et al. prepared sheets of Bi5O7I using the
calcining method. However, the photocatalytic degradation rate of Bi5O7I (0.1 g) for Rhodamine B
(RhB) solution (100 mL, 10mg/L) was only 52% in 120 min under simulated sunlight irradiation [23].
In order to enhance the photocatalytic activity of Bi5O7I, some means were mentioned, such as doping
and compounding [24–27]. The photocatalytic degradation rate of Eu (3%)/Bi5O7I microspheres was
2.8 times that of Bi5O7I [28], and the photocatalytic degradation efficiency of a graphitic carbon nitride
(g-C3N4) (10%)–Bi5O7I nanocomposite was 1.4 times that of Bi5O7I [29].

Most organic pollutants in wastewater can be degraded using photocatalytic technology,
with good degradation effects and no secondary pollution. Nevertheless, the complex process, large
energy consumption, and low recovery rate are the main disadvantages of the common recovery
method, because photocatalytic materials disperse in wastewater uniformly [30]. MnxZn1−xFe2O4

is a soft magnetic ferrite material with its own benefits, such as high saturation magnetization, high
permeability, low coercive force, low loss, strong stability, and so on [31]. Therefore, composite
magnetic photocatalytic materials prepared with MnxZn1−xFe2O4 as a magnetic matrix can achieve
the goal of magnetic recovery, and the heterojunction formed between MnxZn1−xFe2O4 and the
photocatalyst is conducive to enhancing the photocatalytic activity of the composite. For instance,
Zhang et al. [32] synthesized a MnxZn1−xFe2O4/α-Bi2O3 composite magnetic photocatalyst using the
dip-calcination method. However, the recovery rate was only 84.1% under the action of an external
magnet, and the degradation time was more than four hours when the degradation rate attained 86.2%
after five recoveries. The energy consumption of the preparation process is tremendous, because the
precursor of MnxZn1−xFe2O4 must be calcined at 1200 ◦C for three hours. In addition, the synthesis of
composite magnetic photocatalytic materials using Bi5O7I as a photocatalyst and MnxZn1−xFe2O4 as
the magnetic matrix is rarely reported.

To overcome these shortcomings, a Bi5O7I/MnxZn1−xFe2O4 composite magnetic photocatalyst
was prepared using a hydrothermal-roasting method, and the structures and properties were
characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning
electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible light (UV-Vis)
diffuse reflectance spectra (DRS), and a vibrating sample magnetometer (VSM). In the meantime, the
activity and stability of Bi5O7I/MnxZn1−xFe2O4 were evaluated through the degradation of RhB under
simulated sunlight irradiation.

2. Materials and Methods

Analytical reagents of Bi(NO3)3·5H2O, KI, C2H6O2, Fe2(SO4)3, MnSO4·H2O, ZnSO4·7H2O, NaOH,
C28H31ClN2O3, and HNO3 were used as raw materials for sample preparation, and were provided by
Chengdu Kelong Chemical Ltd (Chengdu, China).

2.1. Preparation of Bi5O7I/MnxZn1−xFe2O4

MnxZn1−xFe2O4 was prepared using a hydrothermal method. Firstly, according to the molar
ratio of n(MnO):n(ZnO):n(Fe2O3) = 3.28:1.33:5.39, ZnSO4·7H2O, MnSO4·H2O, and Fe2(SO4)3 were
dissolved in deionized water. Then, 5 M NaOH aqueous solution was added dropwise to adjust the
pH value of the solution to 13 under vigorous stirring. Subsequently, the solution was transferred
into a Teflon-lined autoclave for reaction at 200 ◦C for 5 h. Afterward, the resulting precipitates were
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washed with deionized water, as well as dilute sulfuric acid, several times, before being dried at 80 ◦C
for 12 h.

Bi5O7I/MnxZn1−xFe2O4 was prepared using a hydrothermal-roasting method. Firstly, 5 mL
of ethylene glycol (EG) was dissolved in 35 mL of deionized water with stirring for 10 min to gain
solution A. Then, 2 mmol Bi (NO3)3·5H2O and 2 mmol KI were continuously dissolved in solution A
while stirring to acquire suspension liquid B. Then, 10 wt.% as-prepared MnxZn1−xFe2O4 was added
into suspension liquid B with continuous stirring for 60 min. Afterward, the mixed turbid solution was
transferred into a Teflon-lined autoclave for reaction at 160 ◦C for 12 h, and the resulting precipitates
were washed with deionized water several times. Finally, the precipitates were dried at 80 ◦C for 5 h
and roasted at 480 ◦C for 2 h in a muffle, obtaining Bi5O7I/MnxZn1−xFe2O4. The synthetic process is
displayed in Scheme 1.
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MnxZn1−xFe2O4.

2.2. Characterization

The structures of the as-prepared products were characterized by X-ray diffraction (XRD;
Shimadzu, XRD-6000, Shimadzu, Kyoto, Japan) and Fourier-transform infrared spectroscopy (FTIR;
Nicolet iS50, Thermo Fisher Scientific, Waltham, MA, USA). The morphologies and microstructures of
the products were observed using scanning electron microscopy (SEM; S4800, Hitachi, Tokyo, Japan)
and transmission electron microscopy (TEM; Tecnai G2F20, FEI, Hillsboro, OR, USA). The surfaces
and apertures of the products were measured using an automatic multistation surface and aperture
analyzer (Quadrasorb 2MP, Quantachrome, Boynton Beach, FL, USA). The element contents in the
composite were analyzed by X-ray photoelectron spectroscopy (XPS, ESCALAB250Xi, Thermo Fisher
Scientific, Waltham, MA, USA). The optical absorption ability and magnetic performance of the
products were identified with UV-Vis diffuse reflectance spectra (UV-Vis DRS; TU1901, Beijing, China)
and a vibrating sample magnetometer (VSM; 7410, Lake Shore, Westerville, OH, USA) respectively.

2.3. Photocatalytic Evaluation

The photocatalytic properties of the samples were evaluated through the degradation of Rhodamine
B (RhB) under simulated sunlight irradiation. Firstly, 0.1 g of photocatalyst and 100 mL of RhB aqueous
solution (10 mg·L−1) were put into a beaker and stirred for 30 min in the dark to reach the adsorption
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balance. Then, the mixtures were irradiated with a xenon lamp (CEL-HXF3000, AULTT) of 300 W,
and the ultraviolet-visible emission spectrum. Then, 4 mL of the solution was withdrawn at set
time intervals, before being centrifuged at 4000 rpm for 5 min to get the supernatant. Finally,
the characteristic absorbance of RhB was measured using a UV-Vis spectrophotometer.

3. Results and Discussion

3.1. Structure Characteristics

Figure 1 presents the XRD patterns of MnxZn1−xFe2O4, Bi5O7I, and Bi5O7I/MnxZn1−xFe2O4.
As displayed, the diffraction peaks, located at 28.24◦, 31.23◦, 33.14◦, 33.55◦, 47.82◦, 53.60◦, and 56.12◦,
were assigned to the (312), (004), (204), (020), (224), (316), and (912) planes of orthorhombic Bi5O7I
(JCPDS file No. 40-0538). Neither the preferred growth direction nor the crystal structure of Bi5O7I were
changed by MnxZn1−xFe2O4, because the characteristic peaks of Bi5O7I/MnxZn1−xFe2O4 were basically
consistent with Bi5O7I. Interestingly, the peak of the (912) plane of Bi5O7I/MnxZn1−xFe2O4 overlapped
with the (511) plane of the MnxZn1−xFe2O4. The average crystalline size of Bi5O7I/MnxZn1−xFe2O4

was 71.3 nm, as calculated using the Scherrer formula. The cell parameters were as follows: a =
16.8036 Å, b = 5.0721 Å, c = 11.7316 Å, α = β = γ = 90◦.
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Figure 1. (a) X-ray diffraction (XRD) patterns of Bi5O7I; (b) XRD patterns of MnxZn1−xFe2O4; (c) XRD
patterns of Bi5O7I/MnxZn1−xFe2O4.

The FTIR spectra of MnxZn1−xFe2O4, Bi5O7I, and Bi5O7I/MnxZn1−xFe2O4 are shown in Figure 2.
The characteristic peaks at 3434 cm−1 and 2360 cm−1 were attributed to the stretching vibration
and bending vibration of the hydroxyl group (–OH) from surface-adsorbed water, respectively [33].
Typical Raman bands of the Fe–O–Fe bond and the stretching vibration of the Zn–O bond were
located at 1399 cm−1 and 568 cm−1, respectively [34]. The intensive signals around 1389 cm−1,
846 cm−1, and 610 cm−1 referred to the bending vibration of the Bi–O bond, and 491 cm−1 referred
to the stretching vibration of the Bi–O bond [35]. Figure 2c indicates that the hydroxyl group in
MnxZn1−xFe2O4 disappeared because of the roasting process. There was a slight blueshift about the
bending vibration of the Bi–O bond (from 610 cm−1 to 609 cm−1) and the stretching vibration of the
Fe–O–Fe bond (from 1399 cm−1 to 1395 cm−1). Moreover, the stretching vibration of Zn–O bond
(569 cm−1) could be seen in Bi5O7I/MnxZn1−xFe2O4.

The chemical composition and state of the Bi5O7I/MnxZn1−xFe2O4 sample were investigated
using XPS. The survey spectra in Figure 3a reveal that the elements of Bi, I, O, Mn, Zn, and Fe exist
in Bi5O7I/MnxZn1−xFe2O4. The atomic percentages of Bi, I, O, Mn, Zn, and Fe were 27.4%, 3.74%,
58.13%, 6.51%, 0.35%, and 3.87%, respectively. Figure 3b describes that the two characteristic peaks of
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Bi 4f 5/2 and Bi 4f 7/2 were located at 163.8 eV and 158.5 eV in the high-resolution spectra. The I 3d3/2
and I 3d5/2 peaks in Figure 3c could be fitted with two peaks at 629.6 eV and 618.4 eV. As can be seen
from Figure 3d–g, the signals at 529.2 eV, 640.6 eV, 1020.4eV, and 709.1eV were attributed to the O 1s,
Mn 2p, Zn 2p, and Fe 2p orbitals, respectively.
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In order to observe the morphology of the materials, the samples were characterized by SEM.
As seen from Figure 4, Bi5O7I was composed of irregularly shaped nanosheets, while MnxZn1−xFe2O4

was a spherical particle. The layer thickness of the nanosheets was around 40–60 nm, as shown in
Figure 4c. The energy-dispersive X-ray spectroscopy (EDS) spectrum confirmed that the particles in
Figure 4c were MnxZn1−xFe2O4, demonstrating the successful creation of the MnxZn1−xFe2O4 and
Bi5O7I compound.
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Figure 5a,b display that lots of irregular holes on the sample surface existed. At the same time,
many particles of MnxZn1−xFe2O4 were in contact with the gray shells of Bi5O7I. The high-resolution
TEM (HRTEM) image of the circular region in Figure 5b reveals that Bi5O7I/MnxZn1−xFe2O4 was
polycrystalline due to the different orientation of the crystal surface. The three fringe spacings of
0.321 nm, 0.277 nm, and 0.281 nm between neighboring crystal lattices corresponded to the crystal
surface (312), (204), and (004) of the Bi5O7I crystal, and the fringe spacing of 0.251 nm corresponded to
the crystal surface (311) of MnxZn1−xFe2O4. The EDS result proved the existence of Bi, I, O, Mn, Zn,
and Fe elements, consistent with the XPS investigation.
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A specific surface analyzer was utilized to research the specific surface area and pore diameter
distribution of Bi5O7I/MnxZn1−xFe2O4. From Figure 6, according to the Brunauer isotherm
classification method, the adsorption–desorption isotherm belonged to class IV. The pore diameter
distribution curve described that the most probable pore size of Bi5O7I/MnxZn1−xFe2O4 was 24.1 nm.
Furthermore, the specific surface area of the Bi5O7I/MnxZn1−xFe2O4 sample calculated using the
Brunauer–Emmett–Teller (BET) model was 7.07 m2/g.
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3.2. Absorption Light Ability and Magnetic Properties

The UV-Vis DRS and the (ahv)1/2−hv curve are shown in Figure 7. The largest absorption
wavelengths of Bi5O7I and Bi5O7I/MnxZn1−xFe2O4 were 470 nm and 600 nm, respectively, illustrating
that both could absorb ultraviolet and visible light, and that adding MnxZn1−xFe2O4 extended the
range of absorption light. Moreover, the band-gap energy of the samples could be obtained using
Equation (1) [22].

ahν = A
(
hν − Eg

) n
2 , (1)

where α, h, v, and Eg are the absorption coefficient, Planck constant, light frequency, and bandgap
width, respectively. A is a constant, and n depends on the transition type of the semiconductor optical
carriers (direct transition, n = 1; indirect transition, n = 4). According to the plots of (ahv)1/2−hv,
the band-gap energies of Bi5O7I and Bi5O7I/MnxZn1−xFe2O4 were determined to be 3.27 eV and
3.22 eV, respectively.

In general, the magnetic performance of catalysts determines the recovery efficiency. Therefore,
the magnetic hysteresis loops of the samples were measured. Figure 8b depicts that the saturation
magnetization (Ms), coercivity (Hc), and residual magnetization (Mr) of Bi5O7I/MnxZn1−xFe2O4 were
3.9 emu/g, 126.6 Oe, and 0.7 emu/g, respectively. Compared with MnxZn1−xFe2O4, Ms declined
because the mass ratio of magnetic materials in the photocatalyst was only 10%. It is worth noting
that Bi5O7I/MnxZn1−xFe2O4 is easy to magnetize or demagnetize, and its hysteresis loss was small
in the alternating magnetic field. Figure 8d shows that the particles of Bi5O7I/MnxZn1−xFe2O4 in
the suspension (the right bottle) moved to the magnet rapidly when a magnet was placed close to
the bottle, and the suspension became clear after 4 min. However, the suspension containing Bi5O7I
(the left bottle) did not show any obvious change under the same conditions. From the above analysis,
it was determined that the composite photocatalyst has great magnetic separation capabilities.
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and (d) the suspension of Bi5O7I and Bi5O7I/MnxZn1−xFe2O4 are shown under the magnetic field.

3.3. Photocatalytic Activity

The photocatalytic activity of the as-prepared samples was investigated through photocatalytic
degradation experiments of RhB. From Figure 9a, pure Bi5O7I presented the highest photocatalytic
activity, whereby 97.6% of RhB was degraded within 120 min. The degradation properties of 5%,
10%, 15%, 20%, and 25% MnxZn1−xFe2O4/Bi5O7I were 96.3%, 96.7%, 93.8%, 82.3%, and 72.7%,
respectively. In addition, the first-order kinetics model given by equation ln(C0/C) = kt was applied
to quantitatively understand the reaction kinetics, where C0 (mg·L−1) is the initial concentration of
RhB solution, C (mg·L−1) is the concentration in aqueous solution at time t, and k (min−1) is the
apparent first-order kinetic constant [36]. The degradation constants (in Figure 9b) were calculated to
be 0.0284, 0.0252, 0.0274, 0.0217, 0.0138, and 0.0108 min−1 for pure Bi5O7I, and 5%, 10%, 15%, 20%,
and 25% MnxZn1−xFe2O4/Bi5O7I samples, respectively. Compared with Bi5O7I, the photocatalytic
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activity of the compounds declined for two reasons. On one hand, MnxZn1−xFe2O4 became the
recombination center of the photogenerated electron (e−) and hole (h+), which reduced the lifetime
of the photogenerated carriers. On the other hand, adding MnxZn1−xFe2O4 decreased the amount of
catalyst in the compound.
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over Bi5O7I and Bi5O7I/MnxZn1−xFe2O4.

3.4. Stability and Recycling Ability

The stability and the recycling ability of Bi5O7I/MnxZn1−xFe2O4 were studied through recycling
experiments. After each reaction, the photocatalyst was separated by an external magnet and then
washed with deionized water before being dried at 80 ◦C for 3 h. The recycling experiments show that
the average recovery rate was 90.1%. Figure 10 shows that the degradation rate was still more than
81.1% after five reuses. The experimental results indicate that the composite magnetic photocatalyst
can be reused several times with excellent stability.
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3.5. Photocatalytic Mechanism

There are a few reasons why the composite magnetic photocatalyst has good photocatalytic
activity. Firstly, the existence of a porous structure is helpful for improving the transfer efficiency of the
photogenerated electron and hole. In this structure, the distance from where photogenerated charge is
generated to the semiconductor surface is shortened, which can effectively reduce the recombination
of the photogenerated electron and hole [37].

Secondly, the band structure of the photocatalyst is beneficial for producing a hydroxyl
radical (•OH). Figure 11 illustrates the proposed mechanism for the photocatalytic activity of
Bi5O7I/MnxZn1−xFe2O4 with RhB. As is known, •OH is the major active substance in the
photocatalytic degradation of organic pollutants [38]. The adsorbed water is oxidized to •OH by a
hole when the valence band top has more positive redox potential than that of •OH/H2O (+2.27 eV).
The position of the conduction band bottom (ECB) can be obtained using Equation (2) [39].

ECB = X − EC − 0.5Eg, (2)

where X is the absolute electronegativity of the semiconductor oxide, EC is the potential energy of the
free electron in a standard hydrogen electrode (~4.5 eV), and Eg is the band gap of the semiconductor
oxide. The position of the conduction band bottom for the photocatalyst was determined to be 0.04 eV.
Therefore, the position of the valence band top was 3.31 eV, which is sufficient to turn OH− into •OH
through oxidation.
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Figure 11. Schematic of the possible reaction mechanism of the photocatalytic procedure.

4. Conclusions

The composite magnetic photocatalyst Bi5O7I/MnxZn1−xFe2O4 was prepared using a hydrothermal-
roasting method. This is convenient for mass production in the future because of its simple process
and low cost. According to the analysis results of XRD, FTIR, XPS, SEM, and TEM, Bi5O7I and
MnxZn1−xFe2O4 were successfully combined. Bi5O7I/MnxZn1−xFe2O4 is a mesoporous material, able
to absorb ultraviolet and visible light. Meanwhile, Bi5O7I/MnxZn1−xFe2O4 is a soft magnetic material
with great magnetic induction intensity. The photocatalytic degradation and recycling experiments
revealed that Bi5O7I/MnxZn1−xFe2O4 has good photocatalytic activity and stability.
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