Effects of Cu Substituting Mo in Sr2Fe1.5Mo0.5O6−δ Symmetrical Electrodes for CO2 Electrolysis in Solid Oxide Electrolysis Cells
Abstract
:1. Introduction
2. Experiment
2.1. Powders Preparation
2.2. Cell Fabrication
2.3. Physical and Chemical Characterization
2.4. Electrochemical Performance Testing
2.5. Computational Details
3. Results and Discussion
3.1. Crystal Structure and Morphology
3.2. XPS Analysis
3.3. Electrochemical Performance
3.4. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Wang, M.; Chi, Z.; Li, W.; Yu, H.; Yang, N.; Yu, H. Internal electric field engineering step-scheme–based heterojunction using lead-free Cs3Bi2Br9 perovskite–modified In4SnS8 for selective photocatalytic CO2 reduction to CO. Appl. Catal. B-Environ. 2022, 313, 121426. [Google Scholar] [CrossRef]
- Ni, S.; Wu, W.; Yang, Z.; Zhang, M.; Yang, J. Influence of copper valence in CuOx/TiO2 catalysts on the selectivity of carbon dioxide photocatalytic reduction products. Nanomaterials 2024, 14, 1930. [Google Scholar] [CrossRef]
- Gao, J.; Choo Sze Shiong, S.; Liu, Y. Reduction of CO2 to chemicals and Fuels: Thermocatalysis versus electrocatalysis. Chem. Eng. J. 2023, 472, 145033. [Google Scholar] [CrossRef]
- Ye, R.-P.; Ding, J.; Gong, W.; Argyle, M.D.; Zhong, Q.; Wang, Y.; Russell, C.K.; Xu, Z.; Russell, A.G.; Li, Q.; et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Z.; Bao, A.; Tang, X.; Huang, X.; Yi, H.; Zhao, S.; Sun, T.; Wang, J.; Gao, F. Recent advances on electrocatalytic CO2 reduction to resources: Target products, reaction pathways and typical catalysts. Chem. Eng. J. 2023, 453, 139663. [Google Scholar] [CrossRef]
- Sahu, R.; Patodia, T.; Juyal, S.; Fateh Singh, G.; Prasad, B.; Jain, A. Innovations and fundamentals in visible light-driven photocatalysis for CO2 reduction. Catal. Sci. Technol. 2025, 15, 988–1002. [Google Scholar] [CrossRef]
- Shen, J.; Wu, Z.; Li, C.; Zhang, C.; Genest, A.; Rupprechter, G.; He, L. Emerging applications of MXene materials in CO2 photocatalysis. FlatChem 2021, 28, 100252. [Google Scholar] [CrossRef]
- Yao, S.; He, J.; Gao, F.; Wang, H.; Lin, J.; Bai, Y.; Fang, J.; Zhu, F.; Huang, F.; Wang, M. Highly selective semiconductor photocatalysis for CO2 reduction. J. Mater. Chem. A 2023, 11, 12539–12558. [Google Scholar] [CrossRef]
- He, X.; Liu, M.; Liang, Z.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y.; Zheng, Z.; Huang, B. Photo-enhanced CO2 hydrogenation by plasmonic Cu/ZnO at atmospheric pressure. J. Solid State Chem. 2021, 298, 122113. [Google Scholar] [CrossRef]
- Dong, X.; Li, F.; Zhao, N.; Xiao, F.; Wang, J.; Tan, Y. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Catal. B-Environ. 2016, 191, 8–17. [Google Scholar] [CrossRef]
- Biswas, A.N.; Winter, L.R.; Xie, Z.; Chen, J.G. Utilizing CO2 as a reactant for C3 oxygenate production via Tandem reactions. JACS Au 2023, 3, 293–305. [Google Scholar] [CrossRef]
- Zhou, Z.-Y.; Sun, S.-G. A breakthrough in electrocatalysis of CO2 conversion. Natl. Sci. Rev. 2017, 4, 155–156. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.; Xie, K.; Wang, G.; Bao, X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects. Adv. Mater. 2019, 31, 1902033. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.-D.; Tian, N.; Hu, S.-N.; Zhou, Z.-Y.; Sun, S.-G. Recent advances of bismuth-based electrocatalysts for CO2 reduction: Strategies, mechanism and applications. Mater. Rep. Energy 2023, 3, 100191. [Google Scholar] [CrossRef]
- Yang, M.; Yao, Z.; Liu, S.; Wang, J.; Sun, A.; Xu, H.; Yang, G.; Ran, R.; Zhou, W.; Xiao, G.; et al. Bismuth doped Sr2Fe1.5Mo0.5O6−δ double perovskite as a robust fuel electrode in ceramic oxide cells for direct CO2 electrolysis. J. Mater. Sci. Technol. 2023, 164, 160–167. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, S.; Zhu, X.; Yang, W. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J. Energy Chem. 2017, 26, 593–601. [Google Scholar] [CrossRef]
- Xi, X.; Liu, J.; Fan, Y.; Wang, L.; Li, J.; Li, M.; Luo, J.-L.; Fu, X.-Z. Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6−δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy 2021, 82, 105707. [Google Scholar] [CrossRef]
- Sharma, S.; Tiwari, P.; Basu, S.; Kumari, N. Harnessing the electrocatalytic potential of in-situ exsolution of Ni nanoparticles on lanthanum and calcium co-doped strontium titanate for CO2 reduction in solid oxide electrolysis cells. J. Alloys Compd. 2024, 996, 174831. [Google Scholar] [CrossRef]
- Wang, E.; Zhao, L.; Yang, Z.; Liu, C.; Wang, S.; Yang, R.; Jin, C. SnOx surface modified Sr2Fe1.5Mo0.5O6−δ cathode with enhanced electrocatalytic activities for direct CO2 electrolysis in solid oxide electrolysis cells. J. Colloid Interface Sci. 2025, 680, 605–612. [Google Scholar] [CrossRef]
- Qian, B.; Liu, C.; Wang, S.; Yin, B.; Zheng, Y.; Ge, L.; Chen, H.; Zhang, C. Ca-doped La0.75Sr0.25Cr0.5Mn0.5O3 cathode with enhanced CO2 electrocatalytic performance for high-temperature solid oxide electrolysis cells. Int. J. Hydrogen Energy 2021, 46, 33349–33359. [Google Scholar] [CrossRef]
- Ruan, W.; Wu, M.; Xia, Y.; Ni, J.; Ni, C. High La/Sr ratio in La0.67Sr0.33Fe0.67Ti0.33O3−δ cathode induced a controlled Fe0 exsolution for CO2 electrolysis. J. Alloys Compd. 2024, 970, 172628. [Google Scholar] [CrossRef]
- Li, P.; Yang, P.; Liu, F.; Xiao, W.; Yan, F.; Gan, T.; Zhao, K.; Fu, D. Enhancing catalytic activity of CO2 electrolysis via B-site cation doped perovskite cathode in solid oxide electrolysis cell. Ceram. Int. 2023, 49, 12980–12989. [Google Scholar] [CrossRef]
- Lv, H.; Zhou, Y.; Zhang, X.; Song, Y.; Liu, Q.; Wang, G.; Bao, X. Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6−δ cathode for CO2 electroreduction in solid oxide electrolysis cell. J. Energy Chem. 2019, 35, 71–78. [Google Scholar] [CrossRef]
- Li, M.; Hou, J.; Fan, Y.; Xi, X.; Fu, X.-Z.; Luo, J.-L. Interface modification of Ru-CeO2 co-infiltrated SFM electrode and construction of SDC/YSZ bilayer electrolyte for direct CO2 electrolysis. Electrochim. Acta 2022, 426, 140771. [Google Scholar] [CrossRef]
- Xi, X.A.; Fan, Y.; Zhang, J.J.; Luo, J.L.; Fu, X.Z. In situ construction of hetero-structured perovskite composites with exsolved Fe and Cu metallic nanoparticles as efficient CO2 reduction electrocatalysts for high performance solid oxide electrolysis cells. J. Mater. Chem. A 2022, 10, 2509–2518. [Google Scholar] [CrossRef]
- Sun, C.; Bian, L.; Qi, J.; Yu, W.; Li, S.; Hou, Y.; Wang, L.; Peng, J.; An, S. Boosting CO2 directly electrolysis by electron doping in Sr2Fe1.5Mo0.5O6−δ double perovskite cathode. J. Power Sources 2022, 521, 230984. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wan, Y.; Xie, Y.; Zhu, J.; Pan, H.; Zheng, X.; Xia, C. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with eExcellent electrochemical performances. Adv. Energy Mater. 2019, 9, 1803156. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Xu, C.; Wang, Z.; Qiao, J.; Sun, W.; Sun, K. Sc-doped strontium iron molybdenum cathode for high-efficiency CO2 electrolysis in solid oxide electrolysis cell. J. Fuel Chem. Technol. 2025, 53, 272–281. [Google Scholar] [CrossRef]
- Lim, T.; Jo, K.; Kim, Y.-N.; Lee, H. Valence electronic structure on oxygen reduction reaction kinetics of Cu-doped Ba0.5Sr0.5FeO3−δ for IT-SOFCs. Mater. Lett. 2024, 372, 136959. [Google Scholar] [CrossRef]
- Li, W.; Liang, K.; Wang, J.; Wen, J.; Shi, J.; Zhang, Z.; Jiang, W.; Zhang, R.; Yu, H. Effects of Cu doping on electrochemical NOx removal by La0.8Sr0.2MnO3 perovskites. Environ. Res. 2022, 210, 112955. [Google Scholar] [CrossRef]
- Kumar Tailor, N.; Singh, S.; Afroz, M.A.; Pant, K.K.; Satapathi, S. Unraveling the impact of Cu-doping in lead free halide perovskites for markedly enhancing photocatalytic CO2 reduction performance. Appl. Catal. B-Environ. 2024, 340, 123247. [Google Scholar] [CrossRef]
- Berger, T.; Drexler, H.; Ruh, T.; Lindenthal, L.; Schrenk, F.; Bock, J.; Rameshan, R.; Föttinger, K.; Irrgeher, J.; Rameshan, C. Cu-doped perovskite-type oxides: A structural deep dive and examination of their exsolution behaviour influenced by B-site doping. Catal. Today 2024, 437, 114787. [Google Scholar] [CrossRef]
- Derakhshi, Z.; Baghshahi, S.; Khodadadi, A.A.; Tamizifar, M. Cu-doped LaFe1−xCuxO3 perovskites nano-crystallites for enhanced VOCs detection. Ceram. Int. 2024, 50, 23175–23187. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, H.; You, H.; Su, M.; Huang, L.; Zhou, Z.; Zhang, C.; Zuo, J.; Yan, J.; Xiao, T.; et al. Cu-doped CaFeO3 perovskite oxide as oxygen reduction catalyst in air cathode microbial fuel cells. Environ. Res. 2022, 214, 113968. [Google Scholar] [CrossRef]
- Xu, C.M.; Zhen, S.Y.; Ren, R.Z.; Chen, H.S.; Song, W.L.; Wang, Z.H.; Sun, W.; Sun, K.N. Cu-Doped Sr2Fe1.5Mo0.5O6−δ as a highly active cathode for solid oxide electrolytic cells. Chem. Commun. 2019, 55, 8009–8012. [Google Scholar] [CrossRef]
- Tan, W.; Zhao, S.; Song, H.; Hu, P.; Wang, J.; Qi, Z.; Li, W. CuO and La0.75Sr0.25Cr0.5Mn0.5O3−δ nanoparticles modified Sr2Fe1.5Mo0.5O6−δ perovskite cathodes for CO2 reduction in solid oxide electrolysis cells. J. Alloys Compd. 2025, 1014, 178705. [Google Scholar] [CrossRef]
- Wang, E.; Jin, C.; Zhao, L.; Yang, Z.; Liu, C.; Wang, S.; Lei, X.; Chao, M.; Xu, H.; Yang, R. Reinforced chemical adsorption ability for efficient CO2 electrolysis in solid oxide electrolysis cell via a dual-exsolution strategy. Chem. Eng. J. 2024, 494, 153129. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Y.; Xia, C.; Bouwmeester, H.J.M. Sr2Fe1.4Mn0.1Mo0.5O6−δ perovskite cathode for highly efficient CO2 electrolysis. J. Mater. Chem. A 2019, 7, 22939–22949. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Gao, Y.; Yu, X.; Jiang, H.; Wei, B.; Lü, Z. In situ growth of copper-iron bimetallic nanoparticles in A-site deficient Sr2Fe1.5Mo0.5O6−δ as an active anode material for solid oxide fuel cells. J. Alloys Compd. 2022, 926, 166852. [Google Scholar] [CrossRef]
- Yang, X.; Sun, K.; Sun, W.; Ma, M.; Ren, R.; Qiao, J.; Wang, Z.; Zhen, S.; Xu, C. Surface reconstruction of defective SrTi0.7Cu0.2Mo0.1O3−δ perovskite oxide induced by in-situ copper nanoparticle exsolution for high-performance direct CO2 electrolysis. J. Eur. Ceram. Soc. 2023, 43, 3414–3420. [Google Scholar] [CrossRef]
- Rehman, A.U.; Amin, N.; Tahir, M.B.; Ajaz un Nabi, M.; Morley, N.A.; Alzaid, M.; Amami, M.; Akhtar, M.; Arshad, M.I. Evaluation of spectral, optoelectrical, dielectric, magnetic, and morphological properties of RE3+ (La3+, and Ce3+) and Co2+ co-doped Zn0.75Cu0.25Fe2O4 ferrites. Mater. Chem. Phys. 2022, 275, 125301. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, H.; Chen, T.; Zhou, X.; Du, Z. Synthesis and electrical properties of Al-doped Sr2MgMoO6−δ as an anode material for solid oxide fuel cells. Int. J. Hydrogen Energy 2011, 36, 7257–7264. [Google Scholar] [CrossRef]
- Dong, H.; Wang, M.; Liu, Y.; Han, Z. Optimized solid-state synthesis of Sr2Fe1.5Mo0.5O6−δPerovskite: Implications for efficient synthesis of Mo-containing SOFC electrodes. Crystals 2022, 12, 1533. [Google Scholar] [CrossRef]
- Feng, Q.; Lv, M.; Liu, C.; Chen, G.; Gao, P.; Li, C. Phase relations at 1573 K and 1673 K and thermodynamic assessment of ZrO2-SrO-BaO system. Calphad-Comput. Coupling Phase Diagr. Thermochem. 2024, 87, 102754. [Google Scholar] [CrossRef]
- Lu, C.; Xu, C.; Sun, W.; Ren, R.; Qiao, J.; Wang, Z.; Sun, K.; Pan, G.; Cao, Y. Enhancing catalytic activity of CO2 electrolysis by building efficient and durable heterostructure for solid oxide electrolysis cell cathode. J. Power Sources 2023, 574, 233134. [Google Scholar] [CrossRef]
- Yu, Z.; Si, C.; Sabaté, F.; LaGrow, A.P.; Tai, Z.; Diaconescu, V.M.; Simonelli, L.; Meng, L.; Sabater, M.J.; Li, B.; et al. Defective Ru-doped α-MnO2 nanorods enabling efficient hydrazine oxidation for energy-saving hydrogen production via proton exchange membranes at near-neutral pH. Chem. Eng. J. 2023, 470, 144050. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Tan, W.; Wang, S.; Wen, J.; Zhang, Z.; Yu, H.; Li, W. NiO and Co3O4 nanoparticles decorated La0.8Sr0.2MnO3-based electrodes for electrochemical NOx removal in solid electrolyte cells. Chem. Eng. J. 2023, 466, 143248. [Google Scholar] [CrossRef]
- Li, W.; Yu, H.; Yu, H.; Yang, N.; Zhang, S. Electrochemical reduction of NO by solid electrolyte cells with La0.8Sr0.2MnO3-Ce0.8Sm0.2O1.9 composite cathodes. Chem. Eng. J. 2019, 378, 122188. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Yao, W.; Dong, D.; Xie, K. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3−δ electrode. J. Power Sources 2013, 230, 115–121. [Google Scholar] [CrossRef]
- Yao, W.; Duan, T.; Li, Y.; Yang, L.; Xie, K. Perovskite chromate doped with titanium for direct carbon dioxide electrolysis. New J. Chem. 2015, 39, 2956–2965. [Google Scholar] [CrossRef]
- Qi, W.; Gan, Y.; Yin, D.; Li, Z.; Wu, G.; Xie, K.; Wu, Y. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis. J. Mater. Chem. A 2014, 2, 6904–6915. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, M.; Huang, P.; Guo, G.; Hong, M.; Li, C.; Irvine, J.T.S.; Xie, K. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 2017, 8, 14785. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, K.; Wei, H.; Qin, Q.; Qi, W.; Yang, L.; Ruan, C.; Wu, Y. In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis. Sci. Rep. 2014, 4, 7082. [Google Scholar] [CrossRef] [PubMed]
- Shan, F.; Chen, T.; Ye, L.; Xie, K. Ni–doped Pr0.7Ba0.3MnO3−δ cathodes for enhancing electrolysis of CO2 in eolid oxide electrolytic cells. Molecules 2024, 29, 4492. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Xu, Y.; Xie, K. Enhanced electrolysis of CO2 with Metal–oxide interfaces in perovskite cathode in solid oxide electrolysis cell. Catalysts 2022, 12, 1607. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, C.; Wang, S.; Zhan, Z. Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6−δ electrode solid oxide fuel cells for pure CO2 electrolysis. J. Inorg. Mater. 2021, 36, 1323–1329. [Google Scholar] [CrossRef]
Samples | Binding Energy (eV) | Relative Content (%) | ||
---|---|---|---|---|
Olat. | Oads. | Olat. | Oads. | |
SFM | 529.3 | 531.0 | 36.9 | 63.1 |
SFMC0.1 | 529.8 | 531.0 | 27.9 | 72.1 |
SFMC0.3 | 530.8 | 530.9 | 5.6 | 94.4 |
Samples | Binding Energy (eV) | Relative Content (%) | ||||
---|---|---|---|---|---|---|
Fe2+ | Fe3+ | Fe4+ | Fe2+ | Fe3+ | Fe4+ | |
SFM | 709.7 | 711.2 | 713.5 | 26.6 | 38.1 | 35.3 |
SFMC0.1 | 709.7 | 711.3 | 713.5 | 38.6 | 32.7 | 28.7 |
SFMC0.3 | 709.4 | 711.4 | 714.1 | 36.9 | 33.1 | 30.0 |
Samples | Binding Energy (eV) | Relative Content (%) | ||
---|---|---|---|---|
Mo5+ | Mo6+ | Mo5+ | Mo6+ | |
SFM | 231.7 | 232.8 | 2.9 | 97.1 |
SFMC0.1 | 231.7 | 235.9 | 16.1 | 83.9 |
SFMC0.3 | 231.7 | 229.1 | 6.3 | 93.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.; Hu, P.; Feng, T.; Zhao, S.; Wang, S.; Song, H.; Qi, Z.; Li, W. Effects of Cu Substituting Mo in Sr2Fe1.5Mo0.5O6−δ Symmetrical Electrodes for CO2 Electrolysis in Solid Oxide Electrolysis Cells. Nanomaterials 2025, 15, 585. https://doi.org/10.3390/nano15080585
Tan W, Hu P, Feng T, Zhao S, Wang S, Song H, Qi Z, Li W. Effects of Cu Substituting Mo in Sr2Fe1.5Mo0.5O6−δ Symmetrical Electrodes for CO2 Electrolysis in Solid Oxide Electrolysis Cells. Nanomaterials. 2025; 15(8):585. https://doi.org/10.3390/nano15080585
Chicago/Turabian StyleTan, Wanting, Pengzhan Hu, Tianxiang Feng, Siliang Zhao, Shuai Wang, Hui Song, Zhaoyu Qi, and Wenjie Li. 2025. "Effects of Cu Substituting Mo in Sr2Fe1.5Mo0.5O6−δ Symmetrical Electrodes for CO2 Electrolysis in Solid Oxide Electrolysis Cells" Nanomaterials 15, no. 8: 585. https://doi.org/10.3390/nano15080585
APA StyleTan, W., Hu, P., Feng, T., Zhao, S., Wang, S., Song, H., Qi, Z., & Li, W. (2025). Effects of Cu Substituting Mo in Sr2Fe1.5Mo0.5O6−δ Symmetrical Electrodes for CO2 Electrolysis in Solid Oxide Electrolysis Cells. Nanomaterials, 15(8), 585. https://doi.org/10.3390/nano15080585