The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride Films Resulting from High-Temperature Annealing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jiang, X.F.; Weng, Q.; Wang, X.B.; Li, X.; Zhang, J.; Golberg, D.; Bando, Y. Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review. J. Mater. Sci. Technol. 2015, 31, 589–598. [Google Scholar] [CrossRef]
- Roy, S.; Zhang, X.; Puthirath, A.B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M.M.; Babu, G.; Susarla, S.; Saju, S.K.; Tran, M.K.; et al. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Adv. Mater. 2021, 33, 2101589. [Google Scholar] [CrossRef]
- Liu, L.; Feng, Y.; Shen, Z. Structural and Electronic Properties of h-BN. Phys. Rev. B 2003, 68, 104102. [Google Scholar] [CrossRef]
- Satawara, A.M.; Shaikh, G.A.; Gajjar, P.N.; Gupta, S.K. Structural, Electronic and Optical Properties of Hexagonal Boron-nitride (h-BN) Monolayer: An Ab-initio study. Mater. Today Proc. 2020, 47, 529–532. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Ma, J.; Tong, H.; Yang, J.; Ni, D.; Hu, H.; Zheng, F. A Simple Thermal Decomposition-nitridation Route to Nanocrystalline Boron Nitride (BN) from a Single N and B Source Precursor. J. Alloys Compd. 2011, 509, 6616–6620. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Tsai, C.-L.; Akasaka, T. Optical Band Gap of h-BN Epitaxial Film Grown on c-plane Sapphire Substrate. Phys. Status Solidi C 2010, 7, 1906–1908. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Fang, W.; Li, Q.; Zhang, Q.; Chen, R.; Li, J.; Liu, K.; Yun, F. Vacuum Ultraviolet Photodetectors with MSM Structure Based on Hexagonal Boron Nitride Films via Magnetron Sputtering (Invited). Acta Photon. Sin. 2024, 53, 0753302. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Chen, R.; Zhang, M.; Fang, W.; Li, J.; Wang, M.; Yun, F.; Wang, T.; Hao, Y. Large-Area Self-Assembled Hexagonal Boron Nitride Nanosheet Films for Ultralow Dark Current Vacuum-Ultraviolet Photodetectors. Adv. Funct. Mater. 2024, 34, 2315149. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, Y.; Zhang, S. Synthesis of Hexagonal Boron Nitride Thin Film on Pt Substrates for Resistive Switching Memory Applications. Curr. Appl. Phys. 2022, 44, 117–122. [Google Scholar] [CrossRef]
- Kim, M.; Pallecchi, E.; Ge, R.; Wu, X.; Ducournau, G.; Lee, J.C.; Happy, H.; Akinwande, D. Analogue Switches Made from Boron Nitride Monolayers for Application in 5G and Terahertz Communication Systems. Nat. Electron. 2020, 3, 479–485. [Google Scholar] [CrossRef]
- Guo, N.; Wei, J.; Jia, Y.; Sun, H.; Wang, Y.; Zhao, K.; Shi, X.; Zhang, L.; Li, X.; Cao, A.; et al. Fabrication of Large Area Hexagonal Boron Nitride Thin Films for Bendable Capacitors. Nano Res. 2013, 6, 602–610. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Liu, J.; Zou, Z.; Zhang, X. Preparation and Properties of Thermally Conductive Co-POM Materials Filled with Composite of h-BN and Al2O3. J. East China Univ. Sci. Technol. 2019, 45, 419–423. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Wu, Z.; Han, Y.; Xu, S.; Ye, W.; Han, T.; He, Y.; Cai, Y.; Wang, N.; et al. High-quality Sandwiched Black Phosphorus Heterostructure and its Quantum Oscillations. Nat. Commun. 2015, 6, 7315. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two-Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. J. Mater. Chem. C 2017, 5, 11992–12022. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K.; Rice, T.M. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. Available online: https://search.ebscohost.com/login.aspx?direct=true&AuthType=cookie,ip,shib&db=edsjsr&AN=edsjsr.3376103&lang=zh-cn&site=eds-live (accessed on 28 February 2025).
- Gorbachev, R.V.; Riaz, I.; Nair, R.R.; Jalil, R.; Britnell, L.; Belle, B.D.; Hill, E.W.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7, 465–468. [Google Scholar] [CrossRef]
- Wang, N.; Yang, G.; Wang, H.; Yan, C.; Sun, R.; Wong, C.-P. A Universal Method for Large-Yield and High-Concentration Exfoliation of Two-Dimensional Hexagonal Boron Nitride Nanosheets. Mater. Today 2019, 27, 33–42. [Google Scholar] [CrossRef]
- Zhang, C.; Tan, J.; Pan, Y.; Cai, X.; Zou, X.; Cheng, H.-M.; Liu, B. Mass Production of 2D Materials by Intermediate-assisted Grinding Exfoliation. Natl. Sci. Rev. 2020, 7, 324–332. [Google Scholar] [CrossRef]
- Quan, H.; Wang, X.; Zhang, L.; Liu, N.; Feng, S.; Chen, Z.; Hou, L.; Wang, Q.; Liu, X.; Zhao, J.; et al. Stability to Moisture of Hexagonal Boron Nitride Films Deposited on Silicon by RF Magnetron Sputtering. Thin Solid Films 2017, 642, 90–95. [Google Scholar] [CrossRef]
- Chen, L.; Tai, J.; Wang, D.; Wang, S.; Liang, H.; Yin, H. High-performance Solar-blind Photodetector Based on Amorphous BN in Harsh Environment Operations. Appl. Phys. Lett. 2024, 124, 042102. [Google Scholar] [CrossRef]
- Wu, C.; Soomro, A.M.; Sun, F.; Wang, H.; Huang, Y.; Gao, N.; Chen, X.; Kang, J.; Cai, D.; Wu, J.; et al. Large-roll Growth of 25-inch Hexagonal BN Monolayer Film for Self-release Buffer Layer of Free-standing GaN Wafer. Sci. Rep. 2016, 6, 34766. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Nitta, S.; Nagamatsu, K.; Bae, S.-Y.; Lee, H.-J.; Liu, Y.; Pristovsek, M.; Honda, Y.; Amano, H. Growth of Hexagonal Boron Nitride on Sapphire Substrate by Pulsed-Mode Metalorganic Vapor Phase Epitaxy. J. Cryst. Growth 2018, 482, 1–8. [Google Scholar] [CrossRef]
- Liu, F.; Rong, X.; Sheng, B.W.; Wei, J.Q.; Liu, S.F.; Yang, J.J.; Xu, F.J.; Yang, X.L.; Zhang, Z.H.; Qin, Z.X.; et al. Thermally Annealed Wafer-scale h-BN Films Grown on Sapphire Substrate by Molecular Beam Epitaxy. Appl. Phys. Lett. 2020, 116, 142104. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Zheng, W.; Huang, F. Micron-Thick Hexagonal Boron Nitride Crystalline Film for Vacuum Ultraviolet Photodetection with Improved Sensitivity and Spectral Response. ACS Appl. Electron. Mater. 2021, 3, 3774–3780. [Google Scholar] [CrossRef]
- Sun, X.; Feng, Y.; Wang, F.; Wang, P.; Gao, W.; Yin, H. Direct Growth of h-BN Multilayers with Controlled Thickness on Non-Crystalline Dielectric Substrates Without Metal Catalysts. Chem. Commun. 2022, 58, 9750–9753. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yu, H.; Liu, X.; Zhao, J.; Hou, L.; Gao, Y.; Chen, Z. Transfer-Free Analog and Digital Flexible Memristors Based on Boron Nitride Films. Nanomaterials 2024, 14, 327. [Google Scholar] [CrossRef]
- Thornton, J.A. Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings. J. Vac. Sci. Technol. 1975, 12, 830–835. [Google Scholar] [CrossRef]
- Gansukh, M.; Martinho, F.; Espindola, M.; Engberg, S.; Schou, J.; Canulescu, S. The Effect of Post-Annealing on the Performance of the Cu2ZnSnS4 Solar Cells. Sci. Rep. 2024, 14, 19898. [Google Scholar] [CrossRef]
- Xiao, R.; Cheng, J.; Lu, Z.; Sun, Q.; Wang, X.; Fu, X.; Gao, J. Impact of In-doping and Post-Annealing on the Properties of SnO2 Thin Films Deposited by Magnetron Sputtering. Phys. Scr. 2024, 99, 095937. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, R.X. Effect of Post-annealing Treatment on Structural, Optical and Photocatalytic Properties of TiO2 Nanoparticles Prepared via Pulsed Laser Ablation in Liquid. J. Ovonic Res. 2024, 20, 455–466. [Google Scholar] [CrossRef]
- Wei, C.; Liu, J.; Lan, X.; Yang, C.; Huang, S.; Wang, X.; Chen, D. The Fabrication of Ultra-Wide Bandgap GeO2 Thin Films by DC Magnetron Sputtering: The Impacts of Growth Temperature and Post-Annealing Process. Vacuum 2024, 225, 113233. [Google Scholar] [CrossRef]
- Liu, F.; Yu, J.; Bai, X. Crystallinity Improvement of Hexagonal Boron Nitride Films by Molybdenum Catalysts During Microwave Plasma Chemical Vapor Deposition and Post-Annealing. Appl. Surf. Sci. 2012, 258, 10191–10194. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeong, H.; Okello, O.F.N.; Xiao, S.; Moon, S.; Kim, D.Y.; Kim, G.-Y.; Lo, J.-I.; Peng, Y.-C.; Cheng, B.-M.; et al. Improvements in Structural and Optical Properties of Wafer-Scale Hexagonal Boron Nitride Film by Post-Growth Annealing. Sci. Rep. 2019, 9, 10590. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.-X.; Zhang, X.-K.; Yao, Q.; Wang, X.-Y.; Chen, G.-H.; He, D.-Y. Optical Properties of Hexagonal Boron Nitride Thin Films Deposited by Radio Frequency Bias Magnetron Sputtering. Chin. Phys. B 2009, 18, 4013–4018. Available online: https://search.ebscohost.com/login.aspx?direct=true&AuthType=cookie,ip,shib&db=edswsc&AN=000269578700066&lang=zh-cn&site=eds-live (accessed on 28 February 2025).
- Valerius, P.; Herbig, C.; Will, M.; Michely, T.; Arman, M.A.; Knudsen, J.; Caciuc, V.; Atodiresei, N. Annealing of Ion-irradiated Hexagonal Boron Nitride on Ir(111). Phys. Rev. B 2017, 96, 235410. [Google Scholar] [CrossRef]
- Singhal, R.; Echeverria, E.; McIlroy, D.N.; Singh, R.N. Post-Growth Enhancement of CVD-Grown Hexagonal Boron Nitride Films on Sapphire. Res. Mater. 2022, 16, 100339. [Google Scholar] [CrossRef]
- Solonenko, D.; Schmidt, C.; Zahn, D.R.T.; Stoeckel, C.; Hiller, K. The Limits of the Post-Growth Optimization of AlN Thin Films Grown on Si(111) via Magnetron Sputtering. Phys. Status Solidi B Basic Res. 2020, 257, 1900400. [Google Scholar] [CrossRef]
- Zaiter, A.; Michon, A.; Nemoz, M.; Courville, A.; Vennéguès, P.; Ottapilakkal, V.; Vuong, P.; Sundaram, S.; Ougazzaden, A.; Brault, J. Crystalline Quality and Surface Morphology Improvement of Face-to-Face Annealed MBE-Grown AlN on h-BN. Materials 2022, 15, 8602. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Q.; Fang, C.; Shen, Z.; Lu, Y.; Liu, T.; Tan, S.; Zhang, J. Influence of Sapphire Substrate with Miscut Angles on Hexagonal Boron Nitride Films Grown by Halide Vapor Phase Epitaxy. CrystEngComm 2023, 25, 4604–4610. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Akasaka, T. Hexagonal BN Epitaxial Growth on (0001) Sapphire Substrate by MOVPE. J. Cryst. Growth 2008, 310, 5044–5047. [Google Scholar] [CrossRef]
- Lin, M.; Huang, Y.; Ran, C.; Dong, G.; Zhao, Y. Study on Sintering Properties of Aluminum Oxide Nano-powder for Electronics Packaging. J. Phys. Conf. Ser. 2024, 2713, 012004. [Google Scholar] [CrossRef]
- Sachdev, H.; Haubner, R.; Lux, B.; Nöth, H. Investigation of the c-BN/h-BN Phase Transformation at Normal Pressure. Diam. Relat. Mater. 1997, 6, 286–292. [Google Scholar] [CrossRef]
- Hotta, M.; Goto, T. Densification and Microstructure of Al2O3-cBN Composites Prepared by Spark Plasma Sintering. J. Ceram. Soc. Jpn. 2008, 116, 744. [Google Scholar] [CrossRef]
- Wolfrum, A.-K.; Matthey, B.; Michaelis, A.; Herrmann, M. On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials. Materials 2018, 11, 255. [Google Scholar] [CrossRef]
- Machado Filho, M.A.; Farmer, W.; Hsiao, C.-L.; dos Santos, R.B.; Hultman, L.; Birch, J.; Ankit, K.; Gueorguiev, G.K. Density Functional Theory-Fed Phase Field Model for Semiconductor Nanostructures: The Case of Self-Induced Core-Shell InAlN Nanorods. Cryst. Growth Des. 2024, 24, 4717–4727. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Gueorguiev, G.K.; Yakimova, R.; Janzén, E. Effect of Impurity Incorporation on Crystallization in AlN Sublimation Epitaxy. J. Appl. Phys. 2004, 96, 5293–5297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liu, K.; Chen, R.; Fang, W.; Zhang, Z.; Chen, Y.; Liu, H.; Lin, Z.; Liu, Y.; Wang, T. The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride Films Resulting from High-Temperature Annealing. Nanomaterials 2025, 15, 484. https://doi.org/10.3390/nano15070484
Li Q, Liu K, Chen R, Fang W, Zhang Z, Chen Y, Liu H, Lin Z, Liu Y, Wang T. The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride Films Resulting from High-Temperature Annealing. Nanomaterials. 2025; 15(7):484. https://doi.org/10.3390/nano15070484
Chicago/Turabian StyleLi, Qiang, Kangkang Liu, Ransheng Chen, Wannian Fang, Zhihao Zhang, Youwei Chen, Haifeng Liu, Ziyan Lin, Yuhuai Liu, and Tao Wang. 2025. "The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride Films Resulting from High-Temperature Annealing" Nanomaterials 15, no. 7: 484. https://doi.org/10.3390/nano15070484
APA StyleLi, Q., Liu, K., Chen, R., Fang, W., Zhang, Z., Chen, Y., Liu, H., Lin, Z., Liu, Y., & Wang, T. (2025). The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride Films Resulting from High-Temperature Annealing. Nanomaterials, 15(7), 484. https://doi.org/10.3390/nano15070484