Quantum Dot Materials and Optoelectronic Devices
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shan, Q.; Dong, Y.; Xiang, H.; Yan, D.; Hu, T.; Yuan, B.; Zhu, H.; Wang, Y.; Zeng, H. Perovskite Quantum Dots for the Next-Generation Displays: Progress and Prospect. Adv. Funct. Mater. 2024, 34, 2401284. [Google Scholar] [CrossRef]
- Jin, L.; Selopal, G.S.; Sun, X.W.; Rosei, F. Core-Shell Colloidal Quantum Dots for Energy Conversion. Adv. Energy Mater. 2025, 15, 2403574. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, G.; Ding, C.; Liu, F.; Liu, D.; Masuda, T.; Yoshino, K.; Hayase, S.; Wang, R.; Shen, Q. Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells. Nano-Micro Lett. 2020, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, G.; Ding, C.; Liu, F.; Yao, Y.; Zhou, Y.; Wu, C.; Nakazawa, N.; Huang, Q.; Toyoda, T.; et al. Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy. J. Phys. Chem. Lett. 2018, 9, 3598–3603. [Google Scholar] [CrossRef] [PubMed]
- Farahmandzadeh, F.; Molahosseini, E.; Portakaloo, S.N.; Molaei, M.; Khanzadeh, M. Efficient Gamma Ray Detection Using CdTe/CdS Core/Shell Quantum Dots: A Simple and Rapid Fluorescence Approach. J. Fluoresc. 2025, 35, 1539–1547. [Google Scholar] [CrossRef]
- Shi, G.; Ding, X.; Liu, Z.; Liu, Y.; Chen, Y.; Liu, C.; Ni, Z.; Wang, H.; Ito, K.; Igarashi, K.; et al. Overcoming efficiency and cost barriers for large-area quantum dot photovoltaics through stable ink engineering. Nat. Energy 2025, 10, 592–604. [Google Scholar] [CrossRef]
- Rakshit, S.; Piatkowski, P.; Mora-Seró, I.; Douhal, A. Combining Perovskites and Quantum Dots: Synthesis, Characterization, and Applications in Solar Cells, LEDs, and Photodetectors. Adv. Opt. Mater. 2022, 10, 2102566. [Google Scholar] [CrossRef]
- Kong, J.; Wei, Y.; Zhou, F.; Shi, L.; Zhao, S.; Wan, M.; Zhang, X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024, 29, 2002. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Z.; Shi, Z.; Zhao, F.; Cao, L.; Dong, B.; Xia, C. Bright colloidal gallium-doped CuInS2 quantum dots for luminescent solar concentrators. Chem. Commun. 2024, 60, 14794–14797. [Google Scholar] [CrossRef]
- Liu, Z.; Hao, C.; Sun, Y.; Wang, J.; Dube, L.; Chen, M.; Dang, W.; Hu, J.; Li, X.; Chen, O. Rigid CuInS2/ZnS Core/Shell Quantum Dots for High Performance Infrared Light-Emitting Diodes. Nano Lett. 2024, 24, 5342–5350. [Google Scholar] [CrossRef]
- Bernechea, M.; Cates, N.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521–525. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, X.; Shen, X.; Ding, S.; Feng, H.; Wu, G.; Zhang, Y. Optimizing the Synthetic Conditions of “Green” Colloidal AgBiS2 Nanocrystals Using a Low-Cost Sulfur Source. Nanomaterials 2022, 12, 3742. [Google Scholar] [PubMed]
- Zhang, Y.; Ding, C.; Wu, G.; Nakazawa, N.; Chang, J.; Ogomi, Y.; Toyoda, T.; Hayase, S.; Katayama, K.; Shen, Q. Air Stable PbSe Colloidal Quantum Dot Heterojunction Solar Cells: Ligand-Dependent Exciton Dissociation, Recombination, Photovoltaic Property, and Stability. J. Phys. Chem. C 2016, 120, 28509–28518. [Google Scholar] [CrossRef]
- Que, M.; Xu, Y.; Wu, Q.; Chen, J.; Gao, L.; Liu, S. Application of advanced quantum dots in perovskite solar cells: Synthesis, characterization, mechanism, and performance enhancement. Mater. Horiz. 2025, 12, 2467–2502. [Google Scholar] [CrossRef]
- Hu, C.; Channa, A.I.; Xia, L.; Li, X.; Li, Z.; Wang, Z.M.; Tong, X. Colloidal InAs Quantum Dots: Synthesis, Properties, and Optoelectronic Devices. Adv. Funct. Mater. 2025, 35, 2500280. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, F.; Fang, T.; Gu, D.; Feng, X.; Song, T.; Liu, W. A brief review on metal halide perovskite photocatalysts: History, applications and prospects. J. Alloys Compd. 2022, 911, 165062. [Google Scholar] [CrossRef]
- Pokutnii, S.I.; Radosz, A. Optical Absorption on Electron Quantum-Confined States of Perovskite Quantum Dots. Nanomaterials 2022, 12, 2973. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D. Quantum Mechanical Analysis Based on Perturbation Theory of CdSe/ZnS Quantum-Dot Light-Emission Properties. Nanomaterials 2022, 12, 3590. [Google Scholar]
- Wu, G.; Li, H.; Chen, S.; Liu, S.; Zhang, Y.; Wang, D. In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials 2022, 12, 3881. [Google Scholar] [CrossRef]
- Hu, Y.; Cao, S.; Qiu, P.; Yu, M.; Wei, H. All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies. Nanomaterials 2022, 12, 4372. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Su, X.; Zhang, Q.; Sun, M. Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots. Nanomaterials 2024, 14, 558. [Google Scholar] [CrossRef]
- Alshaikh, A.; Blick, R.H.; Heyn, C. GaAs Cone-Shell Quantum Dots in a Lateral Electric Field: Exciton Stark-Shift, Lifetime, and Fine-Structure Splitting. Nanomaterials 2024, 14, 1174. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, W.; Chu, Y. Hybrid Amino Acid Ligand-Regulated Excited Dynamics of Highly Luminescent Perovskite Quantum Dots for Bright White Light-Emitting Diodes. Nanomaterials 2024, 14, 1266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, G. Quantum Dot Materials and Optoelectronic Devices. Nanomaterials 2025, 15, 1812. https://doi.org/10.3390/nano15231812
Zhang Y, Wu G. Quantum Dot Materials and Optoelectronic Devices. Nanomaterials. 2025; 15(23):1812. https://doi.org/10.3390/nano15231812
Chicago/Turabian StyleZhang, Yaohong, and Guohua Wu. 2025. "Quantum Dot Materials and Optoelectronic Devices" Nanomaterials 15, no. 23: 1812. https://doi.org/10.3390/nano15231812
APA StyleZhang, Y., & Wu, G. (2025). Quantum Dot Materials and Optoelectronic Devices. Nanomaterials, 15(23), 1812. https://doi.org/10.3390/nano15231812

