Robust and Multi-Functional Electrically Responsive Gold/Polydopamine-Coated Liquid Crystalline Elastomer Artificial Muscles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of LCE Polymer Actuator
2.3. Polydopamine Coated LCEs
2.4. Production of Au-Sputter-Coated LCEs and Crack Training
2.5. Characterization
2.6. Adhesion Testing
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, M.; Li, S.; Hu, X.; Leng, X.; Wang, R.; Zhou, X.; Liu, Z. Progresses in tensile, torsional, and multifunctional soft actuators. Adv. Funct. Mater. 2021, 31, 2007437. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, C.; Chen, B.; Wang, Z.; Xu, Y.; Xiao, R. Bioinspired design of stimuli-responsive artificial muscles with multiple actuation modes. Smart Mater. Struct. 2023, 32, 085023. [Google Scholar] [CrossRef]
- Terryn, S.; Langenbach, J.; Roles, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.-A.; Georgopoulou, A.; Thuruthel, T.G.; Safaei, A.; Ferrentino, P.; et al. A review on self-healing polymers for soft robotics. Mater. Today 2021, 47, 187–205. [Google Scholar] [CrossRef]
- McCracken, J.M.; Donovan, B.R.; White, T.J. Materials as machines. Adv. Mater. 2020, 32, 1906564. [Google Scholar] [CrossRef] [PubMed]
- Lendlein, A.; Behl, M.; Hiebl, B.; Wischke, C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 2010, 7, 357–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qin, H.; Mather, P. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543–1558. [Google Scholar] [CrossRef]
- Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54, 2199–2221. [Google Scholar] [CrossRef]
- Zhao, Q.; Qi, H.J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79–120. [Google Scholar] [CrossRef]
- Zhou, J.; Sheiko, S.S. Reversible shape-shifting in polymeric materials. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1365–1380. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Tasmim, S.; Wang, S.; Abdelrahman, M.K.; Zimmern, P.E.; Ware, T.H. Processing advances in liquid crystal elastomers provide a path to biomedical applications. J. Appl. Phys. 2020, 128, 140901. [Google Scholar] [CrossRef]
- Ceamanos, L.; Kahveci, Z.; López-Valdeolivas, M.; Liu, D.; Broer, D.J.; Sánchez-Somolinos, C. Four-dimensional printed liquid crystalline elastomer actuators with fast photoinduced mechanical response toward light-driven robotic functions. ACS Appl. Mater. Interfaces 2020, 12, 44195–44204. [Google Scholar] [CrossRef] [PubMed]
- Lagerwall, J.P.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio-and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Warner, M.; Terentjev, E.M. Liquid Crystal Elastomers: International Series of Monographs on Physics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Wang, Z.; Guo, Y.; Cai, S.; Yang, J. Three-Dimensional Printing of Liquid Crystal Elastomers and Their Applications. ACS Appl. Polym. Mater. 2022, 4, 3153–3168. [Google Scholar] [CrossRef]
- Ince, J.C.; Duffy, A.R.; Salim, N.V. Wet-Spun Disulphide LCE Fibres for Continuous Production of Fibrous Artificial Muscles. Polymers 2025, 17, 2789. [Google Scholar] [CrossRef]
- Traugutt, N.A.; Mistry, D.; Luo, C.; Yu, K.; Ge, Q.; Yakacki, C.M. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater. 2020, 32, e2000797. [Google Scholar] [CrossRef]
- Volpe, R.H.; Mistry, D.; Patel, V.V.; Patel, R.R.; Yakacki, C.M. Dynamically crystalizing liquid-crystal elastomers for an expandable endplate-conforming interbody fusion cage. Adv. Healthc. Mater. 2020, 9, 1901136. [Google Scholar] [CrossRef]
- Herrera-Posada, S.; Mora-Navarro, C.; Ortiz-Bermudez, P.; Torres-Lugo, M.; McElhinny, K.M.; Evans, P.G.; Calcagno, B.O.; Acevedo, A. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates. Mater. Sci. Eng. C 2016, 65, 369–378. [Google Scholar] [CrossRef]
- Brannum, M.T.; Steele, A.M.; Venetos, M.C.; Korley, L.T.J.; Wnek, G.E.; White, T.J. Light control with liquid crystalline elastomers. Adv. Opt. Mater. 2019, 7, 1801683. [Google Scholar] [CrossRef]
- Martinez, A.M.; McBride, M.K.; White, T.J.; Bowman, C.N. Reconfigurable and spatially programmable chameleon skin-like material utilizing light responsive covalent adaptable cholesteric liquid crystal elastomers. Adv. Funct. Mater. 2020, 30, 2003150. [Google Scholar] [CrossRef]
- Mistry, D.; Nikkhou, M.; Raistrick, T.; Hussain, M.; Jull, E.I.L.; Baker, D.L.; Gleeson, H.F. Isotropic liquid crystal elastomers as exceptional photoelastic strain sensors. Macromolecules 2020, 53, 3709–3718. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, C.; Li, J.; Wei, J.; Guo, J. A color-changing plasmonic actuator based on silver nanoparticle array/liquid crystalline elastomer nanocomposites. New J. Chem. 2016, 40, 7311–7319. [Google Scholar] [CrossRef]
- Dolan, P.; Adams, M.A. Time-Dependent Mechanisms that Impair Muscle Protection of the Spine, in Spinal Control; Elsevier: Amsterdam, The Netherlands, 2013; pp. 157–168. [Google Scholar]
- Friesen, W. Central Pattern Generators: Sensory Feedback; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Huo, Z.; He, J.; Pu, H.; Luo, J.; Li, D. Design and printing of embedded conductive patterns in liquid crystal elastomer for programmable electrothermal actuation. Virtual Phys. Prototyp. 2022, 17, 881–893. [Google Scholar] [CrossRef]
- Ford, M.J.; Ambulo, C.P.; Kent, T.A.; Markvicka, E.J.; Pan, C.; Malen, J.; Ware, T.H.; Majidi, C. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2019, 116, 21438–21444. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Liao, W.; Yang, Z. Ultrafast, High-Contractile Electrothermal-Driven Liquid Crystal Elastomer Fibers towards Artificial Muscles. Small 2021, 17, e2103700. [Google Scholar] [CrossRef]
- Wu, D.S.; Zhang, Y.; Yang, H.; Wei, A.; Zhang, Y.; Mensah, A.; Yin, R.; Lv, P.; Feng, Q.; Wei, Q. Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. Mater. Horiz. 2023, 10, 12. [Google Scholar] [CrossRef]
- Ince, J.C.; Duffy, A.R.; Salim, N.V. Silver Coated Multifunctional Liquid Crystalline Elastomer Polymeric Composites as Electro-Responsive and Piezo-Resistive Artificial Muscles. Macromol. Rapid Commun. 2024, 45, e2400370. [Google Scholar] [CrossRef]
- Ando, E.; Suzuki, S.; Shimizu, J.; Hayashi, Y. Sputtered tin silicon oxide films for durable solar control coatings. Thin Solid Film. 1999, 351, 301–307. [Google Scholar] [CrossRef]
- Glocker, D.A. Sputter Deposition and Sputtered Coatings for Biomedical Applications. In Medical Coatings and Deposition Technologies; Wiley: Hoboken, NJ, USA, 2016; pp. 531–552. [Google Scholar] [CrossRef]
- Rhim, J.-W. Preparation and characterization of vacuum sputter silver coated PLA film. LWT-Food Sci. Technol. 2013, 54, 477–484. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, X.; Shen, Z. Coating metals on micropowders by magnetron sputtering. China Particuol. 2007, 5, 345–350. [Google Scholar] [CrossRef]
- He, S.; Xin, B.; Chen, Z.; Liu, Y. Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering. Cellulose 2018, 25, 3691–3701. [Google Scholar] [CrossRef]
- Huang, X.; Yin, Z.; Wu, H. Structural engineering for high-performance flexible and stretchable strain sensors. Adv. Intell. Syst. 2021, 3, 2000194. [Google Scholar] [CrossRef]
- Wang, Y.; He, Q.; Wang, Z.; Zhang, S.; Li, C.; Wang, Z.; Park, Y.; Cai, S. Liquid Crystal Elastomer Based Dexterous Artificial Motor Unit. Adv. Mater. 2023, 35, 2211283. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, P.; Liang, Y.; Zhang, J.; Huang, Y.; Wu, S.; Kuo, S.-W.; Chen, T. Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. J. Mater. Chem. C 2018, 6, 5140–5147. [Google Scholar] [CrossRef]
- Zhou, Y.; Lian, H.; Li, Z.; Yin, L.; Ji, Q.; Li, K.; Qi, F.; Huang, Y. Crack engineering boosts the performance of flexible sensors. VIEW 2022, 3, 20220025. [Google Scholar] [CrossRef]
- Saed, M.O.; Torbati, A.H.; Nair, D.P.; Yakacki, C.M. Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. J. Vis. Exp. 2016, 107, 53546. [Google Scholar]
- Yakacki, C.M.; Saed, M.; Nair, D.P.; Gong, T.; Reed, S.M.; Bowman, C.N. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiolacrylate reaction. RSC Adv. 2015, 5, 18997–19001. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Pierpont, C.G.; Lange, C.W. The Chemistry of Transition Metal Complexes Containing Catechol and Semiquinone Ligands. In Progress in Inorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 1994; pp. 331–442. [Google Scholar]
- Xin, Y.; Yuan, T.; Luo, X.; Liu, D.; Evsyukov, S.A. Effect of polydopamine surface modification on the adhesive properties of nano-injection molded metal-polymer interfaces: A molecular dynamics simulation study. Polym. Eng. Sci. 2024, 64, 1645–1657. [Google Scholar] [CrossRef]
- Kafkopoulos, G.; Padberg, C.J.; Duvigneau, J.; Vancso, G.J. Adhesion Engineering in Polymer-Metal Comolded Joints with Biomimetic Polydopamine. ACS Appl. Mater. Interfaces 2021, 13, 19244–19253. [Google Scholar] [CrossRef] [PubMed]
- Kotikian, A.; Morales, J.M.; Lu, A.; Mueller, J.; Davidson, Z.S.; Boley, J.W.; Lewis, J.A. Innervated, Self-Sensing Liquid Crystal Elastomer Actuators with Closed Loop Control. Adv. Mater. 2021, 33, 2101814. [Google Scholar] [CrossRef]
- He, Q.; Wang, Z.; Wang, Y.; Wang, Z.; Li, C.; Annapooranan, R.; Zeng, J.; Chen, R.; Cai, S. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 2021, 6, eabi9704. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.W.; Jin, B.; Zhao, H.; He, Z.; Jiang, Z.; Jiang, S. Rotini-like MXene@LCE Actuator with Diverse and Programmable Actuation Based on Dual-mode Synergy. Small 2024, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.H.; Wang, J.; Lv, J.A. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles. Adv. Mater. 2023, 35, e2301234. [Google Scholar] [CrossRef] [PubMed]









| Type | Reference | Method Simplicity | Additional Comments | Additional Functionalities | Benefits | Constraints |
|---|---|---|---|---|---|---|
| Joule heating | Kotikian et al. [45] | Moderate: Uses direct ink writing (DIW) for coaxial filaments with a liquid metal core. Requires complex core-sheath extrusion setup. | Supports consistent thermal response and mechanical stability in closed-loop operation. | Self-sensing via resistive feedback from liquid metal for deformation monitoring and closed-loop control. | Enables contractile and flexural actuation and integrates strain and actuation sensing functions. | Slow response due to thermal diffusion requires high current densities to facilitate actuation. |
| Laser-induced actuation | He et al. [46] | High: Electrospinning of precursor solutions with inherent alignment from electric fields; simple for small-scale production and avoids complex steps. | Fast response (300%/s strain rate) and power density (400 W/kg); suitable for micro-robotic durability. | Not explored. | High power density. | Modest actuation stress, non-conductive, and not capable of joule heating. |
| Joule heating | Wu et al. [28] | Moderate: Melt spinning for fibers with conductive coatings; multi-step but uses common techniques for alignment and curing. | High mechanical strength and repeatable cyclic actuation with negligible loss in performance. | Self-sensing via composites for closed-loop control in some variants. | Versatile multi-stimulus responses; large strains (up to 40–50%); integrates with photoelectric conversion. | Minimal constraints, but adhesion and robustness of MXene coating not assessed. |
| Photothermal and thermally responsive | Liang et al. [47] | Simple: Composite fabrication with MXene fillers; simple embedding via lamination or printing for dual-mode synergy. | Robust material for programmable deformations; fatigue resistance in morphing structures. | Integrated temperature/resistance feedback for environmental interaction. | High work density and strains (~40–60%); supports untethered operation with batteries. | Slower response (seconds) and a lack of ability for electro-responsive actuation. |
| Joule heating | Ince et al. [29] | Moderate: Multiple steps each spanning several hours; however, a simple wet-chemistry-based method is employed. | Electro-responsive actuation, strain sensing, and self-actuation sensing. | Integrated sensing functionalities. | Fast actuation response with integrated multi-functionality. | Employed method diminished performance and mechanical integrity. |
| Joule heating | Wang et al. [36] | Moderate: Novel method for producing ultra-thin LCE films followed by Au-sputtering. | Ultrafast actuation rate due to high conductive coating–LCE ratio. | Strain sensing and joule heating. | Ultrafast actuation rate. | Difficult to scale and limited to the production of LCEs with micron-scaled thickness. |
| Photothermal and thermally responsive LCEs | Hou et al. [48] | Moderate: Scalable bioinspired method for continuous production of long LCE fibers. | High actuation stress, strains, and work density. | Not applicable. | Ultrafast production rate; exceptional actuation performance. | Limited to actuating in response to thermal energy and IR radiation. Not capable of joule-heating. |
| Joule heating | Sun et al. [27] | Moderate: Roll-to-roll continuous production of LM LCE fibers. | LCE fibers with moderate to high tensile strength. | Not explored, but has potential for strain sensing. | Ultrafast actuation rate and long, continuously produced LCE fibers. | Laminating method could lead to reproducibility and scaling issues. |
| Joule heating | This work ** | Moderate: Two-step, but utilized method employs resources inaccessible to most academic institutions (wet-chemistry and sputter coating). | Fast actuation (~1 s); robust adhesion of joule-heating coating to LCE. | Multi-functional LCEs: Strain sensing, self-actuation sensing, thermally responsive, and joule heating. | Provides a simple method for potentially improving adherence of various coatings to LCEs, opening the door for the development of future high-performance and multi-functional LCEs. | Non-continuous production method and multi-step fabrication method. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ince, J.C.; Elyasi, S.; Duffy, A.R.; Salim, N.V. Robust and Multi-Functional Electrically Responsive Gold/Polydopamine-Coated Liquid Crystalline Elastomer Artificial Muscles. Nanomaterials 2025, 15, 1658. https://doi.org/10.3390/nano15211658
Ince JC, Elyasi S, Duffy AR, Salim NV. Robust and Multi-Functional Electrically Responsive Gold/Polydopamine-Coated Liquid Crystalline Elastomer Artificial Muscles. Nanomaterials. 2025; 15(21):1658. https://doi.org/10.3390/nano15211658
Chicago/Turabian StyleInce, Joshua C., Setareh Elyasi, Alan R. Duffy, and Nisa V. Salim. 2025. "Robust and Multi-Functional Electrically Responsive Gold/Polydopamine-Coated Liquid Crystalline Elastomer Artificial Muscles" Nanomaterials 15, no. 21: 1658. https://doi.org/10.3390/nano15211658
APA StyleInce, J. C., Elyasi, S., Duffy, A. R., & Salim, N. V. (2025). Robust and Multi-Functional Electrically Responsive Gold/Polydopamine-Coated Liquid Crystalline Elastomer Artificial Muscles. Nanomaterials, 15(21), 1658. https://doi.org/10.3390/nano15211658

