Multilayer Cyclo-Olefin Polymer Films for Enhanced OLED Encapsulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. OLED Device Fabrication and Encapsulation Process
2.3. Measurements
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OLEDs | Organic light-emitting diodes |
COP | Cyclo-olefin polymer |
WVTR | Water vapor transmission rate |
OTR | Oxygen transmission rate |
TFE | Thin film encapsulation |
ALD | Atomic layer deposition |
OCA | Optical clear adhesive |
STM | Surface treatment method |
SUS | Steel use stainless |
AT | Al2O3/TiO2 |
ATATA | Al2O3/TiO2/Al2O3/TiO2/Al2O3 |
References
- Bauri, J.; Choudhary, R.B.; Mandal, G. Recent advances in efficient emissive materials-based OLED applications: A review. J. Mater. Sci. 2021, 56, 18837–18866. [Google Scholar] [CrossRef]
- Mandal, G.; Bauri, J.; Choudhary, R.B. Conjugated polymeric nanocomposite-based light-generating active materials for OLED applications: A review. Mater. Sci. Eng. B 2024, 303, 117271. [Google Scholar] [CrossRef]
- Oner, S.; Bryce, M.R. A review of fused-ring carbazole derivatives as emitter and/or host materials in organic light emitting diode (OLED) applications. Mater. Chem. Front. 2023, 7, 4304–4338. [Google Scholar] [CrossRef]
- Yang, Z.; Hsiang, E.L.; Qian, Y.; Wu, S.T. Performance comparison between mini-LED backlit LCD and OLED display for 15.6-inch notebook computers. Appl. Sci. 2022, 12, 1239. [Google Scholar] [CrossRef]
- Kwon, B.H.; Joo, C.W.; Cho, H.; Kang, C.M.; Yang, J.H.; Shin, J.W.; Kim, S. Organic/inorganic hybrid thin-film encapsulation using inkjet printing and PEALD for industrial large-area process suitability and flexible OLED application. ACS Appl. Mater. Interfaces 2021, 13, 55391–55402. [Google Scholar] [CrossRef]
- Hsiang, E.L.; Yang, Z.; Yang, Q.; Lan, Y.F.; Wu, S.T. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J. Soc. Inf. Disp. 2021, 29, 446–465. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, H.; Kim, H.; Kwon, J.H. A review of various attempts on multi-functional encapsulation technologies for the reliability of OLEDs. Micromachines 2022, 13, 1478. [Google Scholar] [CrossRef]
- Shin, S.; Yoon, H.W.; Jang, Y.; Hong, M. Stoichiometric silicon nitride thin films for gas barrier, with applications to flexible and stretchable OLED encapsulation. Appl. Phys. Lett. 2021, 118, 18. [Google Scholar] [CrossRef]
- Park, J.S.; Chae, H.; Chung, H.K.; Lee, S.I. Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol. 2011, 26, 034001. [Google Scholar] [CrossRef]
- Lee, S.; Han, J.H.; Lee, S.H.; Baek, G.H.; Park, J.S. Review of organic/inorganic thin film encapsulation by atomic layer deposition for a flexible OLED display. JOM 2019, 71, 197–211. [Google Scholar] [CrossRef]
- Wu, J.; Fei, F.; Wei, C.; Chen, X.; Nie, S.; Zhang, D.; Su, Y.; Cui, Z. Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers. RSC Adv. 2018, 8, 5721–5727. [Google Scholar] [CrossRef]
- Jeong, E.G.; Kwon, J.H.; Kang, K.S.; Jeong, S.Y.; Choi, K.C. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J. Inf. Disp. 2020, 21, 19–32. [Google Scholar] [CrossRef]
- Chwang, A.B.; Rothman, M.A.; Mao, S.Y.; Hewitt, R.H.; Weaver, M.S.; Silvernail, J.A.; Rutherford, N. Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett. 2003, 83, 413–415. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jeon, Y.; Choi, S.; Park, J.W.; Kim, H.; Choi, K.C. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl. Mater. Interfaces 2017, 9, 43983–43992. [Google Scholar] [CrossRef]
- Steinmann, V.; Moro, L. Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. J. Mater. Res. 2018, 33, 1925–1936. [Google Scholar] [CrossRef]
- Yu, D.; Yang, Y.Q.; Chen, Z.; Tao, Y.; Liu, Y.F. Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 2016, 362, 43–49. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Duan, Y.; Duan, Y.-H.; Wang, X.; Chen, P.; Yang, D.; Sun, F.-B.; Xue, K.-W. High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes. Org. Electron. 2014, 15, 1120–1125. [Google Scholar] [CrossRef]
- Jung, K.; Bae, J.Y.; Park, S.J.; Yoo, S.; Bae, B.S. High performance organic–inorganic hybrid barrier coating for encapsulation of OLEDs. J. Mater. Chem. 2011, 21, 1977–1983. [Google Scholar] [CrossRef]
- Park, J.; Noh, Y.Y.; Huh, J.W.; Lee, J.; Chu, H. Optical and barrier properties of thin-film encapsulations for transparent OLEDs. Org. Electron. 2012, 13, 1956–1961. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Wang, J.; Chen, X. Recent Achievements for Flexible Encapsulation Films Based on Atomic/Molecular Layer Deposition. Micromachines 2024, 15, 478. [Google Scholar] [CrossRef]
- Hoffmann, L.; Brinkmann, K.O.; Malerczyk, J.; Rogalla, D.; Becker, T.; Theirich, D.; Riedl, T. Spatial atmospheric pressure atomic layer deposition of tin oxide as an impermeable electron extraction layer for perovskite solar cells with enhanced thermal stability. ACS Appl. Mater. Interfaces 2018, 10, 6006–6013. [Google Scholar] [CrossRef]
- Li, C.; Yue, S.; Tian, W.; Ye, Y.; Liu, J.; Huang, Y.; Qu, S. Large-area flexible thin film encapsulation with high barrier and super-hydrophobic property. Adv. Mater. Interfaces 2023, 10, 2300172. [Google Scholar] [CrossRef]
- Kim, B.J.; Park, H.; Seong, H.; Lee, M.S.; Kwon, B.H.; Kim, D.H.; Im, S.G. A single-chamber system of initiated chemical vapor deposition and atomic layer deposition for fabrication of organic/inorganic multilayer films. Adv. Eng. Mater. 2017, 19, 1600819. [Google Scholar] [CrossRef]
- Kim, K.-S.; Park, B.-M.; Han, K.-Y. Lifetime Improvement of Organic Light-Emitting Diodes Using Cyclo-Olefin Polymer Film as Passivation for Flexible Display. In Proceedings of the International Display Workshops (IDW 2019), Sapporo, Japan, 27–29 November 2019; The Institute of Image Information and Television Engineers (ITE): Tokyo, Japan, 2019. [Google Scholar] [CrossRef]
- Lange, J.; Wyser, Y. Recent innovations in barrier technologies for plastic packaging—A review. Packag. Technol. Sci. 2003, 16, 149–158. [Google Scholar] [CrossRef]
- Michiels, Y.; Van Puyvelde, P.; Sels, B. Barriers and chemistry in a bottle: Mechanisms in today’s oxygen barriers for tomorrow’s materials. Appl. Sci. 2017, 7, 665. [Google Scholar] [CrossRef]
- Kotsilkova, R.; Borovanska, I.; Todorov, P.; Ivanov, E.; Menseidov, D.; Chakraborty, S.; Bhattacharjee, C. Tensile and surface mechanical properties of polyethersulphone (PES) and polyvinylidene fluoride (PVDF) membranes. J. Theor. Appl. Mech. 2018, 48, 85–99. [Google Scholar] [CrossRef]
- Panowicz, R.; Konarzewski, M.; Durejko, T.; Szala, M.; Łazińska, M.; Czerwińska, M.; Prasuła, P. Properties of polyethylene terephthalate (PET) after thermo-oxidative aging. Materials 2021, 14, 3833. [Google Scholar] [CrossRef]
- Zhang, P.; Tong, Z.; Yang, M.; Gong, L.; Liu, Z.; Chen, Y. Polyethylene terephthalate bottles with excellent oxygen, water vapor barrier and mechanical performances prepared by injection and blow molding. Polym. Eng. Sci. 2024, 64, 2301–2311. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A.; Abe, A.; Bloch, D.R. (Eds.) Polymer Handbook; Wiley: New York, NY, USA, 1999; Volume 89. [Google Scholar]
- Jeong, J.; Kim, S.; Yun, S.; Yang, X.; Kim, Y.J. Preparation and Characterization of Low CTE Poly(Ethersulfone) Using Lignin Nanocomposites as Flexible Substrates. Polymers 2023, 15, 3113. [Google Scholar] [CrossRef]
- Blanton, T.N. An X-ray diffraction study of poly(ethylene-2,6-naphthalate) (PEN). Powder Diffr. 2002, 17, 125–131. [Google Scholar] [CrossRef]
- Cakmak, M.; Wang, Y.D.; Simhambhatla, M. Processing characteristics, structure development, and properties of uni- and biaxially stretched poly(ethylene 2,6-naphthalate) (PEN) films. Polym. Eng. Sci. 1990, 30, 721–733. [Google Scholar] [CrossRef]
- Laskarakis, A.; Logothetidis, S. On the optical anisotropy of poly(ethylene terephthalate) and poly(ethylene naphthalate) polymeric films by spectroscopic ellipsometry from visible–far ultraviolet to infrared spectral regions. J. Appl. Phys. 2006, 99, 066101. [Google Scholar] [CrossRef]
- Liu, R.Y. Brightness Enhancement Film. U.S. Patent Application US 2016/0282523 A1, 29 September 2016. [Google Scholar]
- ASTM F1249-20; Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D3330/D3330M-22; Standard Test Method for Peel Adhesion of Pressure-Sensitive Tape. ASTM International: West Conshohocken, PA, USA, 2022.
- Sword, R.J.; Sword, J.J.; Brackett, W.W.; Tay, F.R.; Pashley, D.H. New method of measuring permeability of adhesive resin films. Am. J. Dent. 2011, 24, 20–23. [Google Scholar]
- Neves, L.B.; Afonso, I.S.; Nobrega, G.; Barbosa, L.G.; Lima, R.A.; Ribeiro, J.E. A review of methods to modify the PDMS surface wettability and their applications. Micromachines 2024, 15, 670. [Google Scholar] [CrossRef]
- Gerhard, C.; Tasche, D. Homogenization and reduction of the roughness of polished sapphire surfaces via inert gas plasma post-processing. Opt. Mater. Express 2022, 12, 4354–4361. [Google Scholar] [CrossRef]
- Xiang, Y.; Fulmek, P.; Sauer, M.; Foelske, A.; Schmid, U. Characterization of surface modifications in oxygen plasma-treated Teflon AF1600. Langmuir 2024, 40, 4779–4788. [Google Scholar] [CrossRef]
- Zhang, D.; Dougal, S.M.; Yeganeh, M.S. Effects of UV irradiation and plasma treatment on a polystyrene surface studied by IR–visible sum frequency generation spectroscopy. Langmuir 2000, 16, 4528–4532. [Google Scholar] [CrossRef]
- Tan, S.H.; Nguyen, N.T.; Chua, Y.C.; Kang, T.G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 2010, 4, 032204. [Google Scholar] [CrossRef]
- Oh, S.J.; Lee, S.W.; Lee, H.; Kim, H.; Kim, T.S.; Kwon, J.H. Nanolaminate-induced mechanically and environmentally robust Al2O3/TiO2 thin film encapsulation by low-temperature atomic layer deposition: Toward flexible and wearable OLEDs. Adv. Mater. Technol. 2024, 9, 2400381. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, C. A unified OLED aging model combining three modeling approaches for extending AMOLED lifetime. J. Soc. Inf. Disp. 2021, 29, 768–784. [Google Scholar] [CrossRef]
- Azrain, M.M.; Mansor, M.R.; Fadzullah, S.H.S.M.; Omar, G.; Sivakumar, D.; Lim, L.M.; Nordin, M.N.A. Analysis of mechanisms responsible for the formation of dark spots in organic light emitting diodes (OLEDs): A review. Synth. Met. 2018, 235, 160–175. [Google Scholar] [CrossRef]
Materials | Tg (°C) | CTE (ppm/°C) | Transmittance (%) | O2 Permeability (cc, 100 µm/m2, Day) | H2O Permeability (g, 100 µm/m2, Day) | Young’s Modulus (GPa) | Ref. |
---|---|---|---|---|---|---|---|
Glass | 690 | 8 | 91 | - | - | 73 | - |
PC | 155 | 70 | 90 | 900 | 50 | 2.1–2.4 | [27] |
PES | 223 | 60 | 89 | 650 | 105 | 2.4–8.6 | [28] |
PET | 78 | 30 | 89 | 18 | 9 | 2.5–3.0 | [29] |
PEN | 121 | 20 | 88 | 1.0–3.0 | 5.77 | 6.1 | [30] |
PI | 340 | 50 | 30 | - | 135 | 2.8 | [31] |
COP | 138 | 60 | 92 | 0.01–0.1 | 0.1–0.5 | 2.7 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Han, K.-Y. Multilayer Cyclo-Olefin Polymer Films for Enhanced OLED Encapsulation. Nanomaterials 2025, 15, 1587. https://doi.org/10.3390/nano15201587
Park J-H, Han K-Y. Multilayer Cyclo-Olefin Polymer Films for Enhanced OLED Encapsulation. Nanomaterials. 2025; 15(20):1587. https://doi.org/10.3390/nano15201587
Chicago/Turabian StylePark, Ji-Hoon, and Kwan-Young Han. 2025. "Multilayer Cyclo-Olefin Polymer Films for Enhanced OLED Encapsulation" Nanomaterials 15, no. 20: 1587. https://doi.org/10.3390/nano15201587
APA StylePark, J.-H., & Han, K.-Y. (2025). Multilayer Cyclo-Olefin Polymer Films for Enhanced OLED Encapsulation. Nanomaterials, 15(20), 1587. https://doi.org/10.3390/nano15201587