Morphology–Coordination Coupling of Fe–TCPP and g-C3N4 Nanotubes for Enhanced ROS Generation and Visible-Light Photocatalysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Fe–TCPP
2.3. Preparation of g-C3N4 Nanosheets and Nanotubes
2.4. Preparation of Fe–TCPP@g-C3N4
2.5. Characterization
2.6. Measurement of Photocatalytic Activity
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Morphology Evolution of g-C3N4
3.3. X-Ray Photoelectron Spectroscopy Analysis
3.4. Photocatalytic Activity, Stability, and Reproducibility
3.5. Carriers Generation Transfer and Recombination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNNSs | g-C3N4 nanosheets |
CNNTs | g-C3N4 nanotubes |
ROS | Reactive oxygen species |
PL | Photoluminescence |
TRPL | Time-resolved photoluminescence |
EPR | Electron paramagnetic resonance |
BET | Brunauer–Emmett–Teller |
XRD | X-ray diffraction |
FTIR | Fourier-transform infrared spectroscopy |
XPS | X-ray photoelectron spectroscopy |
References
- Singh, K.; Arora, S. Removal of Synthetic Textile Dyes from Wastewaters: A Critical Review on Present Treatment Technologies. Crit. Rev. Environ. Sci. Technol. 2011, 41, 807–878. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. Int. 2019, 27, 2522–2565. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Y.; Hussain, M.I.; Zhou, W.; Chen, Y.; Wang, L.-N. g-C3N4: Properties, Pore Modifications, and Photocatalytic Applications. Nanomaterials 2021, 12, 121. [Google Scholar] [CrossRef]
- Khan, M.A.; Mutahir, S.; Shaheen, I.; Qunhui, Y.; Bououdina, M.; Humayun, M. Recent Advances over the Doped G-C3N4 in Photocatalysis: A Review. Coord. Chem. Rev. 2024, 522, 216227. [Google Scholar] [CrossRef]
- Pattanayak, D.S.; Surana, M.; Kumar, A.; Singh, D.; Pal, D. Graphitic Carbon Nitride(g-C3N4)-Based Photocatalysts for Dye Removal: Current Status. Sust. Chem. Environ. 2024, 7, 100141. [Google Scholar] [CrossRef]
- Chen, S.; Wei, J.; Ren, X.; Song, K.; Sun, J.; Bai, F.; Tian, S. Recent Progress in Porphyrin/g-C3N4 Composite Photocatalysts for Solar Energy Utilization and Conversion. Molecules 2023, 28, 4283. [Google Scholar] [CrossRef]
- Rono, N.; Kibet, J.K.; Martincigh, B.S.; Nyamori, V.O. A Review of the Current Status of Graphitic Carbon Nitride. Crit. Rev. Solid State Mater. Sci. 2020, 46, 189–217. [Google Scholar] [CrossRef]
- Ma, Q.; Kutilike, B.; Kari, N.; Abliz, S.; Yimit, A. Study on Surface Sensitization of G-C3N4 by Functioned Different Aggregation Behavior Porphyrin and Its Optical Properties. Mater. Sci. Semicond. Process. 2021, 121, 105316. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. J. Photochem. Photobiol. C Photochem. Rev. 2014, 20, 33–50. [Google Scholar] [CrossRef]
- Bhattacharjee, B.; Mishra, S.R.; Gadore, V. Ahmaruzzaman Carbon-Based Composites for Environmental Clean-up: Advances in Biochar, g-C3N4, Graphene Oxide and CNTs. J. Taiwan. Inst. Chem. Eng. 2024, 168, 105918. [Google Scholar] [CrossRef]
- Khan, I.; Sun, Y.; Khan, F.; Zhang, J.; Kareem, A.; Naseem, M.; Ali, Z.; Sultan, M.; Arif, U.; Ma, X.; et al. Synthesis, Mechanism and Environmental Applications of g-C3N4 Composites: A Synergistic Approach to Adsorption and Photocatalysis. Sep. Purif. Technol. 2024, 359, 130472. [Google Scholar] [CrossRef]
- Thomas, S.A.; Pallavolu, M.R.; Khan, M.E.; Cherusseri, J. Graphitic Carbon Nitride (g-C3N4): Futuristic Material for Rechargeable Batteries. J. Energy Storage 2023, 68, 107673. [Google Scholar] [CrossRef]
- Lin, L.; Hou, C.; Zhang, X.; Wang, Y.; Chen, Y.; He, T. Highly Efficient Visible-Light Driven Photocatalytic Reduction of CO2 over g-C3N4 Nanosheets/Tetra(4-Carboxyphenyl)Porphyrin Iron(III) Chloride Heterogeneous Catalysts. Appl. Catal. B Environ. 2018, 221, 312–319. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, H.; Zhang, M.; Hou, S.; Li, Q.; Yang, J. Oxygen Vacancies Promoted the Generation of Sulfate Radicals and Singlet Oxygen by Peroxymonosulfate Activation with Co3O4 Quantum Dots/g-C3N4 Nanosheets. Chem. Eng. Sci. 2024, 284, 119463. [Google Scholar] [CrossRef]
- Chen, L.; Maigbay, M.A.; Li, M.; Qiu, X. Synthesis and Modification Strategies of G-C3N4 Nanosheets for Photocatalytic Applications. Adv. Powder Mater. 2023, 3, 100150. [Google Scholar] [CrossRef]
- Li, W.; He, X.; Ge, R.; Zhu, M.; Feng, L.; Li, Y. Cobalt Porphyrin (CoTCPP) Advanced Visible Light Response of g-C3N4 Nanosheets. Sustain. Mater. Technol. 2019, 22, e00114. [Google Scholar] [CrossRef]
- Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P.M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Zhu, X.; Jiang, Z.; Song, Y.; Liu, D.; Li, H.; Yang, X.; She, Y.; Lei, Y.; Yuan, S.; et al. Porous Nitrogen-Rich g-C3N4 Nanotubes for Efficient Photocatalytic CO2 Reduction. Appl. Catal. B Environ. 2019, 256, 117854. [Google Scholar] [CrossRef]
- Arkhurst, B.; Guo, R.; Gunawan, D.; Oppong-Antwi, L.; Ashong, A.N.; Fan, X.; Rokh, G.B.; Chan, S.L.I. Scalable Fabrication of High Surface Area G-C3N4 Nanotubes for Efficient Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2024, 87, 321–331. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, X.; Chen, H.; Hu, X.; Yang, P. Formation of g-C3N4 Nanotubes towards Superior Photocatalysis Performance. ChemCatChem 2019, 11, 4558–4567. [Google Scholar] [CrossRef]
- Li, K.; Yan, L.; Zeng, Z.; Luo, S.; Luo, X.; Liu, X.; Guo, H.; Guo, Y. Fabrication of H3PW12O40-Doped Carbon Nitride Nanotubes by One-Step Hydrothermal Treatment Strategy and Their Efficient Visible-Light Photocatalytic Activity toward Representative Aqueous Persistent Organic Pollutants Degradation. Appl. Catal. B Environ. 2014, 156–157, 141–152. [Google Scholar] [CrossRef]
- Rayati, S.; Bathaee, H.; Badiei, A. Synergistic Catalytic Performance of G-C3N4/Porphyrin Composite: Synthesis, Characterization, and Applications in Aerobic Photooxidation of Sulfides. J. Mol. Struct. 2025, 1332, 141695. [Google Scholar] [CrossRef]
- Dong, M.; Li, Q.; Xiao, F.; Wang, Y.; Yang, D.; Yang, Y. Remarkably Enhanced Light and Ultrasonic-Boosting Peroxidase-like Activity of g-C3N4-Cu-TCPP for Antimicrobial Applications. Appl. Surf. Sci. 2023, 633, 157537. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, S.; Hu, C.; Duan, M.; Song, M.; Huang, F.; Cai, J. Coupling Graphitic Carbon Nitrides with Tetracarboxyphenyl Porphyrin Molecules through π–π Stacking for Efficient Photocatalysis. J. Mater. Sci Mater. Electron. 2020, 31, 10677–10688. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Q.; Wang, Z.; Zhu, Y. An All-Organic 0D/2D Supramolecular Porphyrin/g-C3N4 Heterojunction Assembled via π-π Interaction for Efficient Visible Photocatalytic Oxidation. Appl. Catal. B Environ. 2021, 291, 120059. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, L.; Qu, D.; Yang, J.; Weng, Y.; Wang, Z.; Sun, Z.; Chen, Y.; He, T. Boosting Visible-Light Driven Solar-Fuel Production over g-C3N4/Tetra(4-Carboxyphenyl)Porphyrin Iron(III) Chloride Hybrid Photocatalyst via Incorporation with Carbon Dots. Appl. Catal. B Environ. 2020, 265, 118595. [Google Scholar] [CrossRef]
- Lai, H.T.; Nguyen, G.T.; Tran, N.T.; Nguyen, T.T.; Van Tran, C.; Nguyen, D.K.; Chang, S.W.; Chung, W.J.; Nguyen, D.D.; Thi, H.P.N.; et al. Assembled Porphyrin Nanofiber on the Surface of G-C3N4 Nanomaterials for Enhanced Photocatalytic Degradation of Organic Dyes. Catalysts 2022, 12, 1630. [Google Scholar] [CrossRef]
- Joseph, M.; Sadik, N.K.M.; Remello, S.N.; Haridas, S.; De, S. Through Space Sigma Donation π Acceptor Assisted Photocatalytic Degradation of Ciprofloxacin on TCPP Supported g-C3N4. ChemistrySelect 2023, 8, e202203348. [Google Scholar] [CrossRef]
- Dvoranová, D.; Mazúr, M.; Papailias, I.; Giannakopoulou, T.; Trapalis, C.; Brezová, V. EPR Investigations of G-C3N4/TiO2 Nanocomposites. Catalysts 2018, 8, 47. [Google Scholar] [CrossRef]
- Hussain, S.; Wan, X.; Fang, Z.; Peng, X. Superhydrophilic and Photothermal Fe–TCPP Nanofibrous Membrane for Efficient Oil-in-Water Nanoemulsion Separation. Langmuir 2021, 37, 12981–12989. [Google Scholar] [CrossRef]
- Yao, A.; Hua, D.; Zhao, F.; Zheng, D.; Pan, J.; Hong, Y.; Liu, Y.; Rao, X.; Zhou, S.; Zhan, G. Integration of P84 and Porphyrin–Based 2D MOFs (M−TCPP, M = Zn, Cu, Co, Ni) for Mixed Matrix Membranes towards Enhanced Performance in Organic Solvent Nanofiltration. Sep. Purif. Technol. 2022, 282, 120022. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-Free Catalysts. J. Mater. Chem. 2008, 18, 4893. [Google Scholar] [CrossRef]
- Pela, R.R.; Hsiao, C.-L.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Electronic and Optical Properties of Core–Shell InAlN Nanorods: A Comparative Study via LDA, LDA-1/2, mBJ, HSE06, G0W0 and BSE Methods. Phys. Chem. Chem. Phys. 2024, 26, 7504–7514. [Google Scholar] [CrossRef]
- Gülseren, O.; Yildirim, T.; Ciraci, S. Systematic Ab Initio Study of Curvature Effects in Carbon Nanotubes. Phys. Rev. B Condens. Matter 2002, 65, 153405. [Google Scholar] [CrossRef]
- Sharma, P.; Sarngan, P.P.; Lakshmanan, A.; Sarkar, D. One-Step Synthesis of Highly Reactive g-C3N4. J. Mater. Sci Mater. Electron. 2021, 33, 9116–9125. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. g-C3N4-Based 2D/2D Composite Heterojunction Photocatalyst. Small. Struct. 2021, 2, 2100086. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic Carbon Nitride Based Nanocomposites: A Review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Rojas, G.; Chen, X.; Bravo, C.; Kim, J.-H.; Kim, J.-S.; Xiao, J.; Dowben, P.A.; Gao, Y.; Zeng, X.C.; Choe, W.; et al. Self-Assembly and Properties of Nonmetalated Tetraphenyl-Porphyrin on Metal Substrates. J. Phys. Chem. C 2010, 114, 9408–9415. [Google Scholar] [CrossRef]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation Performance of G-C3N4Fabricated by Directly Heating Melamine. Langmuir 2009, 25, 10397–10401. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Guo, P.; Chen, X.; Zhang, Z.; Guo, Y.; Chen, Z.; Yang, H.; Luo, D.; Liu, X. Highly Efficient and Stable Potassium-Doped g-C3N4/Zn0.5Cd0.5S Quantum Dot Heterojunction Photocatalyst for Hydrogen Evolution. Bat. Energy 2024, 4, e20240033. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Wan, Y.; Liu, H.; Chen, W.; Wang, G.; Wang, R. Defect Engineering in Atomic-Layered Graphitic Carbon Nitride for Greatly Extended Visible-Light Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2020, 12, 13805–13812. [Google Scholar] [CrossRef] [PubMed]
- Ortix, C.; van den Brink, J. Effect of Curvature on the Electronic Structure and Bound-State Formation in Rolled-up Nanotubes. Phys. Rev. B 2010, 81, 165419. [Google Scholar] [CrossRef]
- Taira, H.; Shima, H. Curvature Effects on Surface Electron States in Ballistic Nanostructures. Surf. Sci. 2007, 601, 5270–5275. [Google Scholar] [CrossRef]
- Buglak, A.A.; Filatov, M.A.; Hussain, M.A.; Sugimoto, M. Singlet Oxygen Generation by Porphyrins and Metalloporphyrins Revisited: A Quantitative Structure-Property Relationship (QSPR) Study. J. Photochem. Photobiol. A. Chem. 2020, 403, 112833. [Google Scholar] [CrossRef]
- Kanofsky, J.R. Singlet Oxygen Production from the Reactions of Superoxide Ion in Aprotic Solvents: Implications for Hydrophobic Biochemistry. Free Radic. Res. Commun. 1991, 12, 87–92. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, N.; Zhang, Y.; Dong, C.; Chen, Z.; Chen, J. Morphology–Coordination Coupling of Fe–TCPP and g-C3N4 Nanotubes for Enhanced ROS Generation and Visible-Light Photocatalysis. Nanomaterials 2025, 15, 1465. https://doi.org/10.3390/nano15191465
Zheng N, Zhang Y, Dong C, Chen Z, Chen J. Morphology–Coordination Coupling of Fe–TCPP and g-C3N4 Nanotubes for Enhanced ROS Generation and Visible-Light Photocatalysis. Nanomaterials. 2025; 15(19):1465. https://doi.org/10.3390/nano15191465
Chicago/Turabian StyleZheng, Nannan, Yulan Zhang, Chunlei Dong, Zhiming Chen, and Jianbin Chen. 2025. "Morphology–Coordination Coupling of Fe–TCPP and g-C3N4 Nanotubes for Enhanced ROS Generation and Visible-Light Photocatalysis" Nanomaterials 15, no. 19: 1465. https://doi.org/10.3390/nano15191465
APA StyleZheng, N., Zhang, Y., Dong, C., Chen, Z., & Chen, J. (2025). Morphology–Coordination Coupling of Fe–TCPP and g-C3N4 Nanotubes for Enhanced ROS Generation and Visible-Light Photocatalysis. Nanomaterials, 15(19), 1465. https://doi.org/10.3390/nano15191465