High Efficiency and Long-Term Antibacterial Carbon Dots for Combating Antibiotic Resistance
Abstract
1. Introduction
2. Experimental Section
2.1. Synthesis of ACDs
2.2. Antibacterial Assay In Vitro
2.2.1. Minimum Inhibitory Concentration (MIC) Assay
2.2.2. Spread Plate Method
2.2.3. Time-Dependent Kinetic Analysis
2.3. Cellular Toxicity Test
2.4. Antibacterial Mechanism Investigation for MRSA
2.4.1. Bacterial Morphology Study
2.4.2. Live/Dead Staining
2.4.3. Zeta Potential and Membrane Potential Measurement
2.4.4. Membrane Permeability Measurement
2.4.5. Intracellular ROS Detection
2.4.6. Nucleic Acid Concentration Determination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of ACDs
3.2. Antibacterial Activity of ACDs
3.3. Mechanism of Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, L.; Shi, M.; Xu, Y.; Yu, E.; Zhang, Y.; Li, J.; Liu, F.; Yao, B.; Yu, J.; Wu, J. Covalent organic framework: A rising star in antibacterial agents. Adv. Funct. Mater. 2025, 35, 2411237. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C.; Zhao, F.; Shi, X.; Liu, J.; Shi, J. Selective adsorption to pathogenic bacteria augments antibacterial activity via adjusting the physicochemical property of nanoparticles. Adv. Funct. Mater. 2025, 35, 2416594. [Google Scholar] [CrossRef]
- Ghirardello, M.; Ramos-Soriano, J.; Galan, M. Carbon dots as an emergent class of antimicrobial agents. Nanomaterials 2021, 11, 1877. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Shi, Y.; Song, H.; Yu, C. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2020, 32, 1904106. [Google Scholar] [CrossRef]
- Koshani, R.; Yeh, S.; He, Z.; Narasimhalu, N.; Steeg, L.; Sim, D.; Woods, R.; Read, A.; Sheikhi, A. Polymeric anti-antibiotic microparticles to prevent antibiotic resistance evolution. Small 2025, 21, 2407549. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.; Brunetti, G.; Chiriacò, M.; Ferrara, F.; Ciminelli, C. A novel hybrid platform for live/dead bacteria accurate sorting by on-chip DEP device. Int. J. Mol. Sci. 2023, 24, 7077. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Abdelsalam, M.; Mostafa, M.; Alasiri, M.; Ibrahem, M.; Ellethy, A.; Almuzaini, A.; Aljarallah, S.; et al. Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods. Front. Microbiol. 2025, 16, 1549044. [Google Scholar] [CrossRef] [PubMed]
- Heuer, C.; Preuss, J.; Buttkewitz, M.; Scheper, T.; Segal, E.; Bahnemann, J. A 3D-printed microfluidic gradient generator with integrated photonic silicon sensors for rapid antimicrobial susceptibility testing. Lab Chip 2022, 22, 4950–4961. [Google Scholar] [CrossRef]
- Kastner, S.; Dietel, A.K.; Seier, F.; Ghosh, S.; Weiß, D.; Makarewicz, O.; Csáki, A.; Fritzsche, W. LSPR-based biosensing enables the detection of antimicrobial resistance genes. Small 2023, 19, 2207953. [Google Scholar] [CrossRef]
- Liu, H.; Xing, F.; Zhou, Y.; Yu, P.; Xu, J.; Luo, R.; Xiang, Z.; Rommens, P.M.; Liu, M.; Ritz, U. Nanomaterials-based photothermal therapies for antibacterial applications. Mater. Des. 2023, 233, 112231. [Google Scholar] [CrossRef]
- Li, B.; Mao, J.; Wu, J.; Mao, K.; Jia, Y.; Chen, F.; Liu, J. Nano-bio interactions: Biofilm-targeted antibacterial nanomaterials. Small 2023, 20, 2306135. [Google Scholar] [CrossRef]
- Cui, F.; Li, T.; Wang, D.; Yi, S.; Li, J.; Li, X. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. J. Hazard. Mater. 2022, 431, 128597. [Google Scholar] [CrossRef]
- Wang, D.; Yan, Z.; Ren, L.; Jiang, Y.; Zhou, K.; Li, X.; Cui, F.; Li, T.; Li, J. Carbon dots as new antioxidants: Synthesis, activity, mechanism and application in the food industry. Food Chem. 2025, 475, 143377. [Google Scholar] [CrossRef]
- Chen, H.; Luo, K.; Xie, C.; Zhou, L. Nanotechnology of carbon dots with their hybrids for biomedical applications: A review. Chem. Eng. J. 2024, 496, 153915. [Google Scholar] [CrossRef]
- Bulat, T.; Zmejkoski, D.; Marković, Z.; Satzinger, M.; Kovač, J.; Strobl, B.; Milivojević, D.; Marković, B.T. Employing carbon quantum dots to combat cytomegalovirus. Mater. Chem. Phy. 2024, 311, 128495. [Google Scholar] [CrossRef]
- Cheng, J.; Dai, L.; Wu, Q.; Deng, T.; Cheng, B. Macrophage membrane-encapsulated carbon dots for precise targeting diagnosis and treatment of bacterial infections. ACS Appl. Mater. Interfaces 2025, 17, 8262–8273. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Zhao, Q.; Sun, Z.; Zhong, M.; Xiong, L.; Liu, B.; Hao, Z. Rutin-loaded carbon dots for management of methicillin-resistant Staphylococcus aureus lung infection. ACS Appl. Nano Mater. 2024, 7, 10902–10910. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, G.; Shi, Q.; Fan, W.; Xie, X. Carbon dots as an emerging antibacterial agent: Antibacterial mechanism and synthetic optimization. J. Environ. Chem. Eng. 2025, 13, 118127. [Google Scholar] [CrossRef]
- Du, X.; Zhang, M.; Ma, Y.; Zhang, Y.; Li, W.; Hu, T.; Liu, Y.; Huang, H.; Kang, Z. Carbon dots derived from metformin by electrochemical synthesis with broad-spectrum antibacterial properties. J. Mater. Chem. B 2024, 12, 2346–2353. [Google Scholar] [CrossRef]
- Hua, J.; Hua, P.; Qin, K. Tunable fluorescent biomass-derived carbon dots for efficient antibacterial action and bioimaging. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132672. [Google Scholar] [CrossRef]
- Miao, H.; Wang, P.; Wu, J.; Li, X.; Du, Y.; Yan, H.; You, Q.; Dong, W.; Li, L. Highly efficient and broad-spectrum antibacterial carbon dots combat antibiotic resistance. Talanta 2025, 281, 126926. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, S.; Zhang, X.; Zeng, S.; Xu, Y.; Nie, W.; Zhou, Y.; Xu, T.; Chen, P. Quaternary ammonium salts: Insights into synthesis and new directions in antibacterial applications. Bioconjug. Chem. 2023, 34, 302–325. [Google Scholar] [CrossRef]
- Lv, J.; Zeng, C.; Shen, R.; Dong, S.; Li, Y.; Wang, S.; Fan, H.; Huang, H.; Yang, Z.; Lei, Z.; et al. Compiling modules of photosensitizers and quaternary phosphonium blocks into material networks via a co-polymerization strategy: An effective way to fabricate antimicrobial agents against drug resistance. J. Mater. Chem. B 2025, 13, 8395–8405. [Google Scholar] [CrossRef]
- Muzychka, L.; Hodyna, D.; Metelytsia, L.; Smolii, O. Nature-inspired novel quaternary ammonium compounds: Synthesis, antibacterial and antibiofilm activity. ChemMedChem 2024, 20, e202400807. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Y.; Zhang, Y.; Tan, L. Improvement of antibacterial and antifouling properties of a cellulose acetate membrane by surface grafting quaternary ammonium salt. ACS Appl. Mater. Interfaces 2022, 14, 38358–38369. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Xiong, C.; Xu, Z.; Liang, K.; Wu, C.; Wu, W.; Chen, Q. Renewable rosin-based bisquaternary ammonium salt with pyridyl design, synthesis and antifungal activity. Food Chem. 2025, 482, 144188. [Google Scholar] [CrossRef] [PubMed]
- Frolov, N.; Seferyan, M.; Detusheva, E.; Saverina, E.; Son, E.; Akchurin, R.; Kartseva, A.; Firstova, V.; Vereshchagin, A. Exploring the correlation of linker structure and antimicrobial activities of pyridinium-based cationic biocides: Aromatic versus aliphatic architectures. Eur. J. Med. Chem. 2025, 292, 117673. [Google Scholar] [CrossRef]
- Jovanović, S.; Marković, Z.; Budimir, M.; Prekodravac, J.; Zmejkoski, D.; Kepić, D.; Bonasera, A.; Marković, B. Lights and dots toward therapy-carbon-based quantum dots as new agents for photodynamic therapy. Pharmaceutics 2023, 15, 1170. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Wang, G.; Zhang, M.; Sun, Y.; Ding, J. Antibacterial carbon dots. Mater. Today Bio 2025, 30, 101383. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, R.; Liu, X.; Huang, X.; Xiao, X.; Yuan, L. One-step synthesis of blue–green luminescent carbon dots by a low-temperature rapid method and their high-performance antibacterial effect and bacterial imaging. Nanotechnology 2021, 32, 155101. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, P.; Zhou, G.; Shi, Q.; Xie, X. Low temperature synthesis of yellow-green emission carbon dots with excellent antibacterial activity for Escherichia coli and Methicillin-resistant Staphylococcus aureus. Surf. Interfaces 2025, 72, 107056. [Google Scholar] [CrossRef]
- Chai, S.; Zhou, L.; Pei, S.; Zhu, Z.; Chen, B. P-doped carbon quantum dots with antibacterial activity. Micromachines 2021, 12, 1116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, X.; Yu, L.; Wu, L.; Hao, X.; Liu, Q.; Lin, L.; Huang, Z.; Ruan, Z.; Weng, S.; et al. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria. Acta Biomater. 2022, 138, 528–544. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Ma, Y.H.; Gao, G.; Chen, X.; Jia, H.; Li, Y.; Chen, Z.; Wu, F. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl. Mater. Interfaces 2016, 8, 32170–32181. [Google Scholar] [CrossRef]
- Yang, J.; Gao, G.; Zhang, X.; Ma, Y.-H.; Chen, X.; Wu, F. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: Fast gram-type identification and selective gram-positive bacterial inactivation. Carbon 2019, 146, 827–839. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, X.; Deng, X.; Peng, K.; Zheng, Z.; Xiao, J.; Zhang, R.; Huang, Z.; Huang, J.; Chen, M.; et al. Long-term antibacterial activity of guanidinium carbon dots without detectable resistance for the effective treatment of pneumonia caused by Gram-negative bacteria. Carbon 2023, 213, 118229. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, X.; Wu, L.; Wu, W.; Zheng, Y.; Lin, L.; Weng, S.; Lin, X. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf. B Biointerfaces 2019, 179, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wu, L.; Wang, X.; Weng, S.; Ruan, Z.; Liu, Q.; Lin, L.; Lin, X. Quaternary ammonium carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon 2020, 163, 70–84. [Google Scholar] [CrossRef]
- Wang, H.; Song, Z.; Gu, J.; Li, S.; Wu, Y.; Han, H. Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection. ACS Biomater. Sci. Eng. 2019, 5, 4739–4749. [Google Scholar] [CrossRef]
- Sviridova, A.; Addad, A.; Plotnikov, E.; Martino, A.; Deresmes, D.; Nikiforova, K.; Trusova, M.; Szunerits, S.; Guselnikova, O.; Postnikov, P.; et al. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity. Biomater. Adv. 2022, 134, 112697. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Gao, Y.; Zhao, C.; Huang, D.; Chen, W.; Lin, X.; Liu, A.; Lin, L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. Biomater. Adv. 2022, 133, 112608. [Google Scholar] [CrossRef]
- He, F.; Liu, X.; Yang, S.; Tan, H.; Yang, L.-P.; Wang, L.-L. Guanidinium-functionalized carbon dots: An efficient antibacterial agent against multidrug-resistant ESKAPE pathogens. ACS Appl. Mater. Interfaces 2024, 16, 65955–65969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, P.; Hao, X.; Liu, J.; Huang, Z.; Weng, S.; Chen, W.; Huang, L.; Huang, J. Quaternized carbon dots with enhanced antimicrobial ability towards gram-negative bacteria for the treatment of acute peritonitis caused by E. coli. J. Mater. Chem. B 2023, 11, 7696–7706. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, X.; Zhou, S.; Ren, L.; Meng, Y.; Ma, R.; Wang, S.; Liu, Z.; Alamri, A.S.; Alhomrani, M.; et al. Radish residue carbon dots-based novel starch/chitosan film with high antioxidant, biocompatibility, and antibacterial activities for salmon fillets’ active packaging. Int. J. Biol. Macromol. 2024, 273, 133107. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, M.; Ma, Y.; Wang, X.; Liu, Y.; Huang, H.; Kang, Z. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J. Colloid Interface Sci. 2023, 634, 44–53. [Google Scholar] [CrossRef]
CD Label | Synthesis Process | MIC Values | Long-Term Antibacterial Activity | Ref. |
---|---|---|---|---|
Q-CQDs | Curcumin and GTA reacted in autoclave at 200 °C for 24 h | 4, 8, 8, and 32 µg/mL against S. episermidis, S. aureus, MRSA, and E. coli | Not mentioned | [41] |
Cur-CDs | Curcumin and GTA reacted in autoclave at 200 °C for 8 h | 40, 20, 20, and 60 µg/mL against E. coli, P. aeruginosa, S. aureus, and MRSA | Not mentioned | [21] |
GCDs | Onion powder reacted in autoclave at 210 °C for 4 h, and reacted at 170 °C for 40 min with PHMB | 3.75, 5, 5, and 7.5 µg/mL for B. subtilis, MRSA, S. aureus, and E. coli | Not mentioned | [42] |
QCDs | CA and DDA reacted in an oil bath at 150 °C for 210 min | 30, 15, and 15 µg/mL against E. coli, S. aureus, and MRSA | Not mentioned | [43] |
G-CDs | CA and DDA reacted in an oil bath at 150 °C for 2.5 h, and at 170 °C for 1 h with PHMG | 5, 5, 10, and 10 µg/mL against S. aureus, MRSA, E. coli, and S. marcescent | MIC values against E. coli, S. aureus, and MRSA for 48 h | [36] |
ACDs | CPC and AA reacted in an oil bath at 80 °C for 1 h | 2.5, 5, and 2.5 µg/mL against S. aureus, E. coli, and MRSA | 2.5 µg/mL against MRSA for 72 h | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, D.; Zhou, G.; Li, X.; Sun, T.; Shi, Q.; Xie, X. High Efficiency and Long-Term Antibacterial Carbon Dots for Combating Antibiotic Resistance. Nanomaterials 2025, 15, 1296. https://doi.org/10.3390/nano15171296
Wang B, Zhang D, Zhou G, Li X, Sun T, Shi Q, Xie X. High Efficiency and Long-Term Antibacterial Carbon Dots for Combating Antibiotic Resistance. Nanomaterials. 2025; 15(17):1296. https://doi.org/10.3390/nano15171296
Chicago/Turabian StyleWang, Beibei, Dandan Zhang, Gang Zhou, Xiaodong Li, Tingli Sun, Qingshan Shi, and Xiaobao Xie. 2025. "High Efficiency and Long-Term Antibacterial Carbon Dots for Combating Antibiotic Resistance" Nanomaterials 15, no. 17: 1296. https://doi.org/10.3390/nano15171296
APA StyleWang, B., Zhang, D., Zhou, G., Li, X., Sun, T., Shi, Q., & Xie, X. (2025). High Efficiency and Long-Term Antibacterial Carbon Dots for Combating Antibiotic Resistance. Nanomaterials, 15(17), 1296. https://doi.org/10.3390/nano15171296