Surface-Coated Nano-Sized Aluminum Powder’s Applications in Explosives and Propellants: A Review
Abstract
1. Introduction
2. Effect of Surface Coating on nAl Properties
2.1. Protecting the Activity of nAl
2.2. Improving the Reactivity of nAl
2.3. Increasing the Reaction Degree of nAl
3. Effect of Surface-Coating nAl on Energy Characteristics of Explosives and Propellants
3.1. Increasing the Energy Performance of Explosives
3.2. Increasing the Propellant Burning Rate and Regression Rate
3.3. Improving the Reactivity of Composite Energetic Materials
4. Effect of Surface-Coating nAl on the Safety Performance of Explosives and Propellants
4.1. Optimizing Compatibilities
4.2. Reducing Mechanical Sensitivities
5. Effect of Surface-Coating nAl on the Process Properties of Explosives and Propellants
6. Effect of Surface-Coating nAl on Other Properties of Explosives and Propellants
6.1. Reducing Hygroscopicity
6.2. Optimizing Combustion Products of Propellants
7. Conclusions
- (1)
- Surface-coating nAl can protect its activity, improve its reactivity, and increase its reaction heat, among many other advantages.
- (2)
- The application of surface-coated nAl in explosives or propellants can increase the energy performance of explosives and the burning rate of propellants.
- (3)
- From the perspective of safety, the application of surface-coated nAl in explosives can improve the compatibility between nAl and energetic materials and reduce the mechanical sensitivity of energetic mixtures.
- (4)
- From the perspective of process, the application of surface-coated nAl in the metal–liquid fuel system can improve the stability of nAl–hydrocarbon slurry fuel and enhance the service life of such materials.
- (5)
- The application of surface-coated nAl in explosives or propellants can also reduce the hygroscopicity of energetic composites and greatly reduce the agglomeration of propellant combustion products, thus reducing the loss of propulsion efficiency caused by agglomeration.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, D.Y.; Chen, L.; Wang, C.; Wu, J.Y. Aluminum acceleration and reaction characteristics for aluminized CL-20-based mixed explosives. Propell. Explos. Pyrot. 2018, 43, 543–551. [Google Scholar] [CrossRef]
- Huang, K.S.; Peng, H.Z.; Yang, F.Y. Research on shock wave overpressure and shock wave sensitivity of explosives containing nano-aluminium powder. In Proceedings of the 2014 Symposium on Energetic Materials and Insensitive Munitions Technology, Chengdu, China, 20–23 November 2014; pp. 339–341. [Google Scholar]
- Hu, H.W.; Chen, L.; Yan, J.J.; Feng, H.Y.; Xiao, C.; Song, P. Effect of aluminum powder on underwater explosion performance of CL-20 based explosives. Propell. Explos. Pyrot. 2019, 44, 837–843. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Chakravarthy, S.R.; Kandasamy, J.; Sarathi, R. Development of nano-Al based highly metalized fuel-rich propellant for water ramjet propulsion applications. Propell. Explos. Pyrot. 2020, 45, 1026–1039. [Google Scholar] [CrossRef]
- Galfetti, L.; DeLuca, L.T.; Severini, F.; Colombo, G.; Meda, L.; Marra, G. Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerosp. Sci. Technol. 2007, 11, 26–32. [Google Scholar] [CrossRef]
- Hu, X.L.; Xiao, L.Q.; Zhou, W.L.; Jian, X.X. Research on the rheological properties of micro/nano aluminum/HTPB. In Proceedings of the 16th Annual Conference of the China Association for Science and Technology—Proceedings of the 9 Forum on the Development of Energy Containing Materials and Green Civil Explosive Industries, Kunming, China, 24–26 May 2014; pp. 1–6. [Google Scholar]
- Zhang, K.; Fu, Q.; Fan, J.H.; Zhou, D.H. Preparation and characterization of nano-aluminium microcapsules. Chin. J. Energetic Mater. 2005, 13, 4–6. [Google Scholar]
- Hao, J.; Ding, A.; Huang, J.H.; Zhang, Y.S.; Qian, K.M.; Ji, S. Cladding assembly and characterization of HTPB-TDI coated high activity nano-aluminum powder. Chin. J. Rare Met. 2018, 42, 168–174. [Google Scholar]
- Liu, H.; Ye, H. Synthesis and property of poly(trimethylolpropane triaerylate)/A1 nanocomposite particle by in situ solution polymerization. Appl. Surf. Sci. 2008, 254, 4432–4438. [Google Scholar] [CrossRef]
- Zha, M.X. Activity Preservation of Nano-Aluminum and Its Performance Research. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2013. [Google Scholar]
- Li, X.H. The Preparation of Organic Matter Coated Nano-Aluminum and Its Activity Preservation Research. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2017. [Google Scholar]
- Mathe, V.L.; Varma, V.; Raut, S.; Nandi, A.K.; Pant, A.; Prasanth, H.; Pandey, R.K.; Bhoraskar, S.V.; Das, A.K. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route. Appl. Surf. Sci. 2016, 368, 16–26. [Google Scholar] [CrossRef]
- Hammerstroem, D.W.; Burgers, M.A.; Chung, S.W.; Guliants, E.A.; Bunker, C.E.; Wentz, K.M.; Hayes, S.E.; Buckner, S.W.; Jelliss, P.A. Aluminum nanopartieles capped by polymerization of alkyl-substituted epoxides: Ratio-dependent stability and particle size. Inorg. Chem. 2011, 50, 5054–5059. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Gromov, A.A.; Ilyin, A.P. Reactivity of superfine aluminum powders stabilized by aluminum diboride. Combust. Flame 2002, 131, 349–352. [Google Scholar] [CrossRef]
- Luo, Z.H. The Assembly and Application of Highly Active Nano-Aluminum Microsphere Particles. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2021. [Google Scholar]
- Zhang, X.T.; Song, W.L.; Guo, L.G. Preparation of carbon-coated Al nanopowders by laser-induction complex heating method. J. Propul. Technol. 2007, 28, 333–336. [Google Scholar]
- Yao, E.G.; Zhao, F.Q.; Hao, H.X.; Xu, S.Y.; Gao, H.X. Preparation of aluminum nanopoders coated with perfluorotetradecanoic acid and its ignition and combustion characteristics. Chin. J. Explos. Propell. 2012, 35, 70–75. [Google Scholar]
- Wang, Q.C.; Zhu, B.Z.; Sun, Y.L.; Li, F.; Wu, Y.X. Thermal reaction characteristics and ignition combustion characteristics of nano-aluminum powder coated with ammonium perchlorate in carbon dioxide. Chin. J. Process Eng. 2017, 17, 271–277. [Google Scholar]
- Hao, D.Y. Surface Functionalization and Combustion Properties of Fluorinated Ferrocene/Nano-Aluminum Powder. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. [Google Scholar]
- Wang, X.X. Research on New Aluminum-Containing Nanocomposite Energetic Materials. Master’s Thesis, North University of China, Taiyuan, China, 2000. [Google Scholar]
- Shi, Z.; Zhao, Y.Y.; Ma, Z.W.; Yang, Y.L.; Zhang, J. Preparation and combustion performances of core-shell structured Al@Cu(BTC)/Fe(BTC) nano-thermite. Chin. J. Energ. Mater. 2024, 32, 465–474. [Google Scholar]
- Wang, H.Y. Electrospray Formation of Nano Energetic Materials and Characterization of the Combustion Properties. Ph.D. Thesis, Nanjing University of Science & Technology, Nanjing, China, 2015. [Google Scholar]
- Zhu, B.Z.; Li, F.; Sun, Y.L.; Wu, Y.X.; Wang, Q.C.; Wu, Y.X.; Zhu, Z.C. The effects of additives on the combustion characteristics of aluminum powder in steam. RSC Adv. 2017, 10, 5725. [Google Scholar] [CrossRef]
- Zeng, C.C.; Wang, J.; He, G.S.; Huang, C.; Yang, Z.J.; Liu, S.J.; Gong, F.Y. Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J. Mater. Sci. 2018, 53, 12091. [Google Scholar] [CrossRef]
- Mulamba, O.; Pantoya, M.L. Exothermic surface chemistry on aluminum particles promoting reactivity. Appl. Surf. Sci. 2014, 315, 90–94. [Google Scholar] [CrossRef]
- Cheng, J.L.; Ling, H.H.; Ng, H.Y.; Soon, P.C.; Lee, Y.W. Deposition of nickel nanoparticles onto aluminum powders using a modified polyol process. Mater. Res. Bull. 2009, 44, 95–99. [Google Scholar] [CrossRef]
- Qiu, H.L.; Yin, G. The Preparation Method for Functional Coating Nano-Aluminum-Nickel Powder with Core-Shell Structure. CN200710056768, 9 February 2007. [Google Scholar]
- Kaplowitz, D.A.; Jiang, G.; Gaskell, K. Synthesis and reactive properties of iron oxide–coated nanoaluminum. J. Energ. Mater. 2014, 32, 95–105. [Google Scholar] [CrossRef]
- Yang, H.T.; Huang, C.; Chen, H.H. Tuning reactivity of nanoaluminum with fluoropolymer via electrospray deposition. J. Therm. Anal. Calorim. 2017, 127, 2293–2299. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhao, X.; Li, G.; Gong, F.Y.; Liu, Y.; Yan, Q.L.; Yang, Z.J.; Nie, F.D. Surface fluorination of n-Al particles with improved combustion performance and adjustable reaction kinetics. Chem. Eng. J. 2021, 425, 131619. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Wang, Y.; Zhu, B.Z.; Sun, Y.L. Probing the difference in improving the ignition and combustion of micro/nano-sized aluminum powder modified by VitonA. J. Mater. Sci. 2024, 59, 22091–22108. [Google Scholar] [CrossRef]
- He, W.; Yang, G.C.; Yang, Z.J.; Guo, Z.Q.; Liu, P.J.; Yan, Q.L. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases. Chem. Eng. J. 2020, 381, 122623. [Google Scholar] [CrossRef]
- Yan, T.; Ren, H.; Ma, A.E.; Jiao, Q.J.; Wang, H.X. Effect of fluororubber coating on the properties of nano-aluminum powders. Acta Armamentarii 2019, 40, 1611–1617. [Google Scholar]
- Lü, Y.D.; Yu, X.F.; Yao, B.J.; Jiang, J.; Shi, Q. Preparation and properties study on core-shell structure Al@PTFE composites. Chin. J. Explos. Propell. 2021, 44, 811–818. [Google Scholar]
- Sun, W.Z.; Li, Y.N.; Li, W.K.; Han, Z.W. Preparation of n-Al@PVDF composites by electrospray method and study on its combustion properties. Chin. J. Explos. Propell. 2021, 44, 856–864. [Google Scholar]
- Chang, Z.P. Preparation of Nano-Al/ Fluoropolymer and Its Application in Solid Propellant. Master’s Thesis, Nanjing Science & Technology University, Nanjing, China, 2019. [Google Scholar]
- Wang, H.X.; Ren, H.; Yan, T.; Li, Y.R.; Zhao, W.J. A latent highly activity energetic fuel: Thermal stability and interfacial reaction kinetics of selected fuoropolymer encapsulated sub-micron sized Al particles. Sci. Rep. 2021, 11, 738. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Z.J.; Li, Y.C.; Zheng, B.H.; Yan, Q.L.; Guan, L.F.; Luo, G.; Li, S.B.; Nie, F.D. Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity. Chem. Eng. J. 2020, 383, 123110. [Google Scholar] [CrossRef]
- Wang, J.; Qu, Y.Y.; Gong, F.Y.; Shen, J.P.; Zhang, L. A promising strategy to obtain high energy output and combustion properties by self-activation of nano-Al. Combust. Flame 2019, 204, 220. [Google Scholar] [CrossRef]
- Campbell, L.L.; Hill, K.J.; Smith, D.K.; Pantoya, M.L. Thermal analysis of microscale aluminum particles coated with perfuorotetradecanoic (PFTD) acid. J. Therm. Anal. Calorim. 2021, 145, 289–296. [Google Scholar] [CrossRef]
- Uhlenhake, K.E.; Yehia, O.R.; Noel, A.; Terry, B.C.; Örnek, M.; Belal, H.M.; Gunduz, I.E.; Son, S.F. On the Use of Fluorine-containing nano-aluminum composite particles to tailor composite solid rocket propellants. Propell. Explos. Pyrot. 2022, 47, e202100370. [Google Scholar] [CrossRef]
- Uhlenhake, K.E.; Olsen, D.; Gomez, M.; Rnek, M.; Son, S.F. Photo flash and laser ignition of full density nano-aluminum PVDF films. Combust. Flame 2021, 233, 111570. [Google Scholar] [CrossRef]
- Kim, K.T.; Kim, D.W.; Kim, C.K.; Yoon, J.C. A facile synthesis and efficient thermal oxidation of polytetrafluoroethylene-coated aluminum powders. Mater. Lett. 2016, 167, 262. [Google Scholar] [CrossRef]
- He, M.; Li, D.; Wang, Y. Highly stable nano aluminum coated by self-assembled metal-phenolic network and enhancing energetic performance of nanothermite. J. Alloys. Compounds 2025, 1011, 178482. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, K.T.; Lee, D.U.; Jung, S.H.; Yang, D.Y.; Yu, J.H. Influence of poly(vinylidene fluoride) coating layer on exothermic reactivity and stability of fine aluminum particles. Appl. Surf. Sci. 2021, 551, 149431. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.Y.; Baek, J.; Ka, D.W.; Huynh, A.H.; Wang, Y.J.; Zachaiah, M.R.; Zheng, X.L. Perfluoroalkyl-functionalized graphene oxide as a multifunctional Additive for promoting the energetic performance of aluminum. ACS Nano 2022, 16, 14658–14665. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.Y.; Baek, J.; Wang, H.; Gottfried, J.; Wu, C.C.; Shi, X.; Zachariah, M.; Zheng, X. Ignition and combustion of perfluoroalkyl-functionalized aluminum nanoparticles and nanothermite. Combust. Flame 2022, 242, 112170. [Google Scholar] [CrossRef]
- Tang, G.; Wang, H.; Chen, C.Y.; Xu, Y.B.; Chen, D.P.; Wang, D.L.; Luo, Y.J.; Li, X.Y. Thermal decomposition of nano Al-based energetic composites with fluorinated energetic polyurethane binders: Experimental and theoretical understandings for enhanced combustion and energetic performance. RSC Adv. 2022, 12, 24163–24171. [Google Scholar] [CrossRef]
- E, X.T.F. High-Density Suspension Fuels Containing Oil-Dispersable Nanoparticles. Master’s Thesis, Tianjin University, Tianjin, China, 2015. [Google Scholar]
- Sossi, A.; Duranti, E.; Manzoni, M.; Paravan, C.; Deluca, L.T.; Voozhtsov, A.B.; Lerner, M.I.; Rodkevich, N.G. Combustion of HTPB-based solid fuels loaded with coated nanoaluminum. Combust. Sci. Technol. 2013, 185, 17–36. [Google Scholar] [CrossRef]
- Qin, Z.; Paravan, C.; Colomobo, G.; Tdeluca, L.; Shen, R.Q.; Hua, Y.Y. Effect of fluorides coated nano-aluminum powder on combustion properties of HTPB based fuel. Chin. J. Explos. Propell. 2014, 37, 61–67. [Google Scholar]
- Yao, E.G.; Zhao, F.Q. Thermal behavior and non-isothermal decomposition reaction kinetics of aluminum nanopowders coated with an oleic acid, Hexogen composite system. Acta Phys.-Chim. Sin. 2012, 28, 781. [Google Scholar]
- Li, X.; Zhao, F.-Q.; Gao, H.-X.; Yao, E.-G. Preparation, characterization, and effects on thermal decomposition of ADN of Nano Al/GAP composite particles. J. Propul. Technol. 2014, 35, 694–700. [Google Scholar]
- Li, X.D.; Yang, Y.; Song, C.G.; Sun, Y.T.; Han, Y.Q.; Zhao, Y.; Wang, J.Y. Fabrication and characterization of Viton@FOX-7@Al spherical composite with improved thermal decomposition property and safety performance. Materials 2021, 14, 1093. [Google Scholar] [CrossRef]
- Gibbs, J.B.; Preston, C.N. Preparation and Physical Properties of Metal Slurry Fuels; Lewis Flight Propulsion Lab: Cleveland, OH, USA, 1952. [Google Scholar]
- Wu, T.T.; Liu, J.Z.; Chen, B.H.; Du, L.J.; Yang, W.J. Synthesis of stable JP-10 based nanofluid fuels based on modified aluminum nanoparticles. J. Eng. Thermophys 2021, 42, 1887–1894. [Google Scholar]
- Wang, F. Synthesis of Aluminum Nanoparticles Capped with Organic Agents and Dispersion in Hydrocarbon Fuels. Master’s Thesis, Tianjin University, Tianjin, China, 2016. [Google Scholar]
- E, X.T.F.; Zhang, L.; Wang, F.; Zhang, X.; Zou, J.J. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels. Front. Chem. Sci. Eng. 2018, 12, 358–366. [Google Scholar] [CrossRef]
- Chen, B.H.; Liu, J.Z.; Yuan, J.F.; Zhou, J.H.; Cen, K.F. Adsorption behaviour of tween 85 on nano-aluminium particles in aluminium/JP-10 suspensions. J. Nanosci. Nanotechnol. 2019, 19, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Liu, J.Z.; Yao, F.; Li, H.P.; Zhou, J.H. Effect of oleic acid on the stability and rheology of nanoaluminium/ JP-10 biphase System. Micro Nano Lett. 2017, 12, 675–679. [Google Scholar] [CrossRef]
- Gan, Y.; Qiao, L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust. Flame 2011, 158, 354–368. [Google Scholar] [CrossRef]
- Kim, D.M.; Baek, S.W.; Yoon, J. Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure. Combust. Flame 2016, 173, 1339–1351. [Google Scholar] [CrossRef]
- Li, Y.R.; Ren, H.; Wu, X.Z. Storage stability of glycidyl azide polymer in-situ coating aluminum nanoparticle. Chin. J. Explos. Propell. 2021, 44, 839–843. [Google Scholar]
- Cohen, O.; Michaels, D.; Yavor, Y. Agglomeration in composite propellants containing different nano-aluminum powders. Propell. Explos. Pyrot. 2022, 47, e202100320. [Google Scholar] [CrossRef]
Specific Impacts | Coating Material Used | Characteristics | Ref. | |
---|---|---|---|---|
Effect of surface coating on nAl | Protecting the activity of nAl | PS, HTPB-TDI, ODA, paraffin wax, perfluorotetradecanoic acid, epoxy resin, TMPTA, palmitic acid | These protect the activity of nAl and reduce the oxidation rate of nAl. | [8,9,10,11,12,13] |
Boron powder | Besides protecting the activity of nAl, it can also increase the reaction heat of the system. | [14] | ||
PEG | The nAl reaction temperature is shifted backward. | [15] | ||
Improving the reactivity of nAl | Carbon, nickel, EMOF, AP, PFSA | The exothermic reaction is advanced or the ignition temperature is reduced. | [16,18,20,26,27] | |
KBH4, Fe3O4 | Ignition delay time is shortened and reaction is more intense. | [17,24] | ||
Perfluorooctanoic acid | Increasing instantaneous heat flow | [19] | ||
Cu(BTC), PTFE, PF | Increasing the burning rate | [21,25,30] | ||
NC, PVDF, VitonA | Burning more violently | [22,29,31] | ||
Perfluorootetradecanoic acid, GAP | Increasing the maximum combustion temperature | [23,28] | ||
Increasing the degree of reaction of nAl | Fluorinerubber F2602, PTFE, fluorinerubber F2311, fluorinerubber F2314, PVDF, THV, PFDMA, C11F23COOH, PFTD, FPU, tannic acid | Increasing the total heat of reaction | [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] | |
Effect of surface-coating nAl on energy performance of explosives and propellants | Increasing the energy of mixed explosives | Oleic acid | Increasing the volume calorific value of suspended fuel | [49] |
Fluoroelastomers, fluorine-containing materials | Increasing the burning rate of propellants | [50,51] | ||
Increasing the burning rate or regression rate of propellants | THV, PVDF | Increasing the regression rate of propellants | [41,42] | |
Adjusting the reactivity of composite materials | Oleic acid | Decreasing thermal reaction peak temperature | [52] | |
Effect of surface-coating nAl on the safety performance of explosives | Improving compatibility | GAP | Improving the compatibility of components in the formula of explosives and propellants | [53] |
Reducing mechanical sensitivities | FOX-7+Viton | Reducing the mechanical sensitivity of explosive system | [52] | |
Effect of surface-coating nAl on the process properties of explosives | Process properties | Span-65, Tween-85, oleic acid, Span-80 | Optimizing the process properties of metal–hydrocarbon slurry fuel and expanding the service life of such materials | [54,55,56,57,58,59,60] |
Effect of surface-coating nAl on other properties of explosives or propellants | Hygroscopicity | GAP | Improving the hygroscopicity of energetic system | [61] |
Combustion products of propellant | Viton+stearic acid | Aggregation is greatly reduced, and the loss of propulsion efficiency caused by agglomeration is significantly reduced. | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Guo, H.; Pang, W. Surface-Coated Nano-Sized Aluminum Powder’s Applications in Explosives and Propellants: A Review. Nanomaterials 2025, 15, 1295. https://doi.org/10.3390/nano15171295
Zhang W, Guo H, Pang W. Surface-Coated Nano-Sized Aluminum Powder’s Applications in Explosives and Propellants: A Review. Nanomaterials. 2025; 15(17):1295. https://doi.org/10.3390/nano15171295
Chicago/Turabian StyleZhang, Weipeng, Huili Guo, and Weiqiang Pang. 2025. "Surface-Coated Nano-Sized Aluminum Powder’s Applications in Explosives and Propellants: A Review" Nanomaterials 15, no. 17: 1295. https://doi.org/10.3390/nano15171295
APA StyleZhang, W., Guo, H., & Pang, W. (2025). Surface-Coated Nano-Sized Aluminum Powder’s Applications in Explosives and Propellants: A Review. Nanomaterials, 15(17), 1295. https://doi.org/10.3390/nano15171295