Recent Advances in Suspended 2D Materials and Their Applications
Abstract
:1. Introduction
2. Fabrication of Suspended 2D Materials
2.1. Wet Transfer Methods
2.1.1. Wet Transfer Methods with Supporting Layer
Wet Transfer Methods via Polymer
Wet Transfer Methods via Organic Molecules
2.1.2. Wet Transfer Methods Without Supporting Layer
Frame-Assisted Transfer
Substrate Supported Transfer
2.2. Dry Transfer Methods
2.2.1. Mechanical Exfoliation
2.2.2. Dry Stamp Transfer
3. Suspended 2D Materials Properties
4. Applications
4.1. Pressure Sensor
4.1.1. Strain-Based Pressure Sensors
4.1.2. Displacement-Based Pressure Sensors
4.1.3. Resonant Pressure Sensors
4.2. Accelerometers
4.3. Acoustic Transducers in Audio Frequency
4.3.1. Speakers
Electrostatic Speakers
Electrodynamic Speakers
Piezoelectric Speakers
Thermoacoustic Speakers
4.3.2. Microphone
4.4. Photoelectric Device
4.4.1. Logic Gates
4.4.2. Field Effect Transistor Devices
4.4.3. Photodetectors
4.5. Cryo-Electron Microscopy
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene Photonics and Optoelectronics. Nat. Photon. 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Xu, X.; Yao, W.; Xiao, D.; Heinz, T.F. Spin and Pseudospins in Layered Transition Metal Dichalcogenides. Nat. Phys. 2014, 10, 343–350. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh Electron Mobility in Suspended Graphene. Nat. Phys. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Das, S.; Xue, H.; Bai, X.; Hulkko, E.; Zhang, G.; Yang, X.; Dai, Q.; Sun, Z. Electrical Control of Interband Resonant Nonlinear Optics in Monolayer MoS2. ACS Nano 2020, 14, 8442–8448. [Google Scholar] [CrossRef]
- Choi, W.R.; Hong, J.H.; You, Y.G.; Campbell, E.E.B.; Jhang, S.H. Suspended MoTe2 Field Effect Transistors with Ionic Liquid Gate. Appl. Phys. Lett. 2021, 119, 223105. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Chen, X.; Zhang, D.; Zhou, P. Dramatic Switching Behavior in Suspended MoS2 Field-Effect Transistors. Semicond. Sci. Tech. 2018, 33, 024001. [Google Scholar] [CrossRef]
- Wang, F.; Stepanov, P.; Gray, M.; Lau, C.N.; Itkis, M.E.; Haddon, R.C. Ionic Liquid Gating of Suspended MoS2 Field Effect Transistor Devices. Nano Lett. 2015, 15, 5284–5288. [Google Scholar] [CrossRef]
- Chen, C.; Hone, J. Graphene Nanoelectromechanical Systems. Proc. IEEE 2013, 101, 1766–1779. [Google Scholar] [CrossRef]
- Chen, C.; Rosenblatt, S.; Bolotin, K.I.; Kalb, W.; Kim, P.; Kymissis, I.; Stormer, H.L.; Heinz, T.F.; Hone, J. Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout. Nat. Nanotechnol. 2009, 4, 861–867. [Google Scholar] [CrossRef]
- Lee, J.; Wang, Z.; He, K.; Shan, J.; Feng, P.X.L. High Frequency MoS2 Nanomechanical Resonators. ACS Nano 2013, 7, 6086–6091. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Lemme, M.C.; Akinwande, D.; Huyghebaert, C.; Stampfer, C. 2D Materials for Future Heterogeneous Electronics. Nat. Commun. 2022, 13, 1392. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, C.; Zhou, P. 2D Semiconductors for Specific Electronic Applications: From Device to System. npj 2D Mater. Appl. 2022, 6, 51. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Gong, S.S.; Zhang, Q.; Ming, P.; Wan, S.J.; Peng, J.S.; Jiang, L.; Cheng, Q.F. Graphene-Based Artificial Nacre Nanocomposites. Chem. Soc. Rev. 2016, 45, 2378–2395. [Google Scholar] [CrossRef]
- Lemme, M.C.; Wagner, S.; Lee, K.; Fan, X.; Verbiest, G.J.; Wittmann, S.; Lukas, S.; Dolleman, R.J.; Niklaus, F.; van der Zant, H.S.; et al. Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research 2020, 2020, 8748602. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Jiang, T.; Huang, D.; Cheng, J.; Fan, X.; Zhang, Z.; Shan, Y.; Yi, Y.; Dai, Y.; Shi, L.; Liu, K.; et al. Gate-Tunable Third-Order Nonlinear Optical Response of Massless Dirac Fermions in Graphene. Nat. Photon. 2018, 12, 430–436. [Google Scholar] [CrossRef]
- Chiout, A.; Brochard-Richard, C.; Marty, L.; Bendiab, N.; Zhao, M.-Q.; Johnson, A.T.C.; Oehler, F.; Ouerghi, A.; Chaste, J. Extreme Mechanical Tunability in Suspended MoS2 Resonator Controlled by Joule Heating. npj 2D Mater. Appl. 2023, 7, 20. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Kulyk, B.; Fernandes, A.J.S.; Fortunato, E.; Costa, F.M. A Review on the Applications of Graphene in Mechanical Transduction. Adv. Mater. 2022, 34, 2101326. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.Y.; Gweon, G.H.; Fedorov, A.V.; First, P.N.; de Heer, W.A.; Lee, D.H.; Guinea, F.; Castro Neto, A.H.; Lanzara, A. Substrate-Induced Bandgap Opening in Epitaxial Graphene. Nat. Mater. 2007, 6, 770–775. [Google Scholar] [CrossRef]
- Castriota, M.; Politano, G.G.; Vena, C.; De Santo, M.P.; Desiderio, G.; Davoli, M.; Cazzanelli, E.; Versace, C. Variable Angle Spectroscopic Ellipsometry Investigation of CVD-Grown Monolayer Graphene. Appl. Surf. Sci. 2019, 467–468, 213–220. [Google Scholar] [CrossRef]
- Politano, G.G.; Vena, C.; Desiderio, G.; Versace, C. Variable Angle Spectroscopic Ellipsometry Characterization of Turbostratic CVD-Grown Bilayer and Trilayer Graphene. Opt. Mater. 2020, 107, 110165. [Google Scholar] [CrossRef]
- Rhodes, D.; Chae, S.H.; Ribeiro-Palau, R.; Hone, J. Disorder in Van Der Waals Heterostructures of 2D Materials. Nat. Mater. 2019, 18, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Chavez-Angel, E.; Chaitoglou, S.; Sledzinska, M.; Dimoulas, A.; Sotomayor Torres, C.M.; El Sachat, A. Anisotropic Thermal Conductivity of Crystalline Layered SnSe2. Nano Lett. 2021, 21, 9172–9179. [Google Scholar] [CrossRef]
- El Sachat, A.; Könemann, F.; Menges, F.; Del Corro, E.; Garrido, J.A.; Sotomayor Torres, C.M.; Alzina, F.; Gotsmann, B. Crossover from Ballistic to Diffusive Thermal Transport in Suspended Graphene Membranes. 2D Mater. 2019, 6, 025034. [Google Scholar] [CrossRef]
- Tomori, H.; Kanda, A.; Goto, H.; Ootuka, Y.; Tsukagoshi, K.; Moriyama, S.; Watanabe, E.; Tsuya, D. Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars. Appl. Phys. Express 2011, 4, 075102. [Google Scholar] [CrossRef]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef]
- Lau, C.N.; Bao, W.; Velasco, J. Properties of Suspended Graphene Membranes. Mater. Today 2012, 15, 238–245. [Google Scholar] [CrossRef]
- Androulidakis, C.; Zhang, K.H.; Robertson, M.; Tawfick, S. Tailoring the Mechanical Properties of 2D Materials and Heterostructures. 2D Mater. 2018, 5, 032005. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.; Dong, L.; Aiyiti, A.; Xu, X.; Li, B. Superior Thermal Conductivity in Suspended Bilayer Hexagonal Boron Nitride. Sci. Rep. 2016, 6, 25334. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E.J.G.; Li, L.H. High Thermal Conductivity of High-Quality Monolayer Boron Nitride and Its Thermal Expansion. Sci. Adv. 2019, 5, eaav0129. [Google Scholar] [CrossRef]
- Ben Jabra, Z.; Abel, M.; Fabbri, F.; Aqua, J.-N.; Koudia, M.; Michon, A.; Castrucci, P.; Ronda, A.; Vach, H.; De Crescenzi, M.; et al. Van Der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC. ACS Nano 2022, 16, 5920–5931. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Tegenkamp, C. Exploring Graphene-Substrate Interactions: Plasmonic Excitation in Sn-Intercalated Epitaxial Graphene. 2D Mater. 2024, 11, 025013. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O.; Ghosal, C.; Zahn, D.R.T.; Tegenkamp, C. Confinement Induced Strain Effects in Epitaxial Graphene. Carbon 2025, 234, 120002. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Tegenkamp, C. Sn Intercalation into the BL/SiC(0001) Interface: A Detailed Spa-Leed Investigation. Surf. Interfaces 2022, 34, 102304. [Google Scholar] [CrossRef]
- Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical Resonators from Graphene Sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Prechtel, L.; Song, L.; Schuh, D.; Ajayan, P.; Wegscheider, W.; Holleitner, A.W. Time-Resolved Ultrafast Photocurrents and Terahertz Generation in Freely Suspended Graphene. Nat. Commun. 2012, 3, 646. [Google Scholar] [CrossRef]
- Abbas, A.N.; Liu, B.; Chen, L.; Ma, Y.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. Black Phosphorus Gas Sensors. ACS Nano 2015, 9, 5618–5624. [Google Scholar] [CrossRef]
- Lee, G.; Kim, S.; Jung, S.; Jang, S.; Kim, J. Suspended Black Phosphorus Nanosheet Gas Sensors. Sens. Actuators B Chem. 2017, 250, 569–573. [Google Scholar] [CrossRef]
- Liu, X.; Hu, S.; Luo, J.; Li, X.; Wu, J.; Chi, D.; Ang, K.W.; Yu, W.; Cai, Y. Suspended MoS2 Photodetector Using Patterned Sapphire Substrate. Small 2021, 17, 2100246. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Y.K.; Huang, X.Y.; Zhang, G.H.; Han, X.; Yang, Y.; Gao, Y.A.; Meng, L.; Wang, Y.S.; Geng, G.Z.; et al. An Efficient Route to Prepare Suspended Monolayer for Feasible Optical and Electronic Characterizations of Two-Dimensional Materials. InfoMat 2022, 4, e12274. [Google Scholar] [CrossRef]
- Feldman, B.E.; Martin, J.; Yacoby, A. Broken-Symmetry States and Divergent Resistance in Suspended Bilayer Graphene. Nat. Phys. 2009, 5, 889–893. [Google Scholar] [CrossRef]
- Wu, S.; Liu, W.-T.; Liang, X.; Schuck, P.J.; Wang, F.; Shen, Y.R.; Salmeron, M. Hot Phonon Dynamics in Graphene. Nano Lett. 2012, 12, 5495–5499. [Google Scholar] [CrossRef]
- Jin, W.; Yeh, P.-C.; Zaki, N.; Zhang, D.; Liou, J.T.; Sadowski, J.T.; Barinov, A.; Yablonskikh, M.; Dadap, J.I.; Sutter, P.; et al. ubstrate Interactions with Suspended and Supported Monolayer MoS2: Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2015, 91, 121409. [Google Scholar] [CrossRef]
- Barton, R.A.; Storch, I.R.; Adiga, V.P.; Sakakibara, R.; Cipriany, B.R.; Ilic, B.; Wang, S.P.; Ong, P.; McEuen, P.L.; Parpia, J.M.; et al. Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems. Nano Lett. 2012, 12, 4681–4686. [Google Scholar] [CrossRef]
- Han, J.; Lee, J.-Y.; Choe, J.; Yeo, J.-S. High-Yield Fabrication of Suspended Two-Dimensional Materials for Atomic Resolution Imaging. RSC Adv. 2016, 6, 76273–76279. [Google Scholar] [CrossRef]
- Zande, A.M.V.D.; Barton, R.A.; Alden, J.S.; Ruiz-Vargas, C.S.; Whitney, W.S.; Pham, P.H.Q.; Park, J.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Large-Scale Arrays of Single-Layer Graphene Resonators. Nano Lett. 2010, 10, 4869–4873. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Xu, F.S.; Zheng, X.D.; Wang, G.S.; Zhang, Y.; Qiu, J.; Liu, G.J. Large-Size Suspended Mono-Layer Graphene Film Transfer Based on the Inverted Floating Method. Micromachines 2021, 12, 525. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Shao, J.; Hao, H.; Wang, G.; Zhao, Y.; Zhu, Y.; Jia, K.; Lu, Q.; Yang, J.; et al. Cyclododecane-Based High-Intactness and Clean Transfer Method for Fabricating Suspended Two-Dimensional Materials. Nat. Commun. 2024, 15, 6957. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Xu, J.; Wang, W.; Gao, X.; Zhao, C.; Guo, W.; Sun, L.; Cheng, H.; Meng, F.; Chen, B.; et al. Self-Assembled Superstructure Alleviates Air-Water Interface Effect in Cryo-EM. Nat. Commun. 2024, 15, 7300. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; van der Zant, H.S.J.; Agraït, N.; Rubio-Bollinger, G. Elastic Properties of Freely Suspended MoS2 Nanosheets. Adv. Mater. 2012, 24, 772–775. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, J.; Ly, T.H. Clean Transfer of Two-Dimensional Materials: A Comprehensive Review. ACS Nano 2024, 18, 11573–11597. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, J.; Zhang, D.; Sun, H.; Yin, L.; Ma, L.; Chen, J.; Ma, D.; Cheng, H.-M.; Ren, W. Rosin-Enabled Ultraclean and Damage-Free Transfer of Graphene for Large-Area Flexible Organic Light-Emitting Diodes. Nat. Commun. 2017, 8, 14560. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, L.; Zhang, X.; Ruan, K.; Cui, L.; Wang, Y.; Liao, L.; Wang, Z.; Jie, J. Clean Surface Transfer of Graphene Films Via an Effective Sandwich Method for Organic Light-Emitting Diode Applications. J. Mater. Chem. C 2014, 2, 201–207. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Dai, Z.; Zhang, S.; Hou, Y.; Wang, G.; Li, Q.; Zhang, Z.; Wei, Y.; Liu, L. Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials. Adv. Mater. Interfaces 2022, 9, 2101939. [Google Scholar] [CrossRef]
- Pettes, M.T.; Jo, I.; Yao, Z.; Shi, L. Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene. Nano Lett. 2011, 11, 1195–1200. [Google Scholar] [CrossRef]
- Lin, W.-H.; Chen, T.-H.; Chang, J.-K.; Taur, J.-I.; Lo, Y.-Y.; Lee, W.-L.; Chang, C.-S.; Su, W.-B.; Wu, C.-I. A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. ACS Nano 2014, 8, 1784–1791. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. Intermolecular Interaction Characteristics of the All-Carboatomic Ring, Cyclo[18]Carbon: Focusing on Molecular Adsorption and Stacking. Carbon 2021, 171, 514–523. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y.; et al. Towards Super-Clean Graphene. Nat. Commun. 2019, 10, 1912. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.C.; Ci, H.N.; Zhang, J.C.; Sun, Z.T.; Ma, Z.T.; Zhu, Y.S.; Liu, S.N.; Liu, J.L.; Sun, L.Z.; Liu, X.T.; et al. Superclean Growth of Graphene Using Cold-Wall Chemical Vapor Deposition Approach. Angew. Chem.-Int. Ed. 2020, 59, 17214–17218. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Rahman, M.A.; Vashishtha, P.; Guo, X.; Sehrawat, M.; Mitra, R.; Giridhar, S.P.; Waqar, M.; Bhoriya, A.; Murdoch, B.J.; et al. Oxygen-Passivated Sulfur Vacancies in Monolayer MoS2 for Enhanced Piezoelectricity. ACS Nano 2025, 19, 3478–3489. [Google Scholar] [CrossRef]
- Su, Y.; Han, H.-L.; Cai, Q.; Wu, Q.; Xie, M.; Chen, D.; Geng, B.; Zhang, Y.; Wang, F.; Shen, Y.R.; et al. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy. Nano Lett. 2015, 15, 6501–6505. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Kim, H.; Cho, Y.; Ryoo, J.H.; Park, C.-H.; Kim, P.; Kim, Y.S.; Lee, S.; Li, Y.; Park, S.-N.; et al. Bright Visible Light Emission from Graphene. Nat. Nanotechnol. 2015, 10, 676–681. [Google Scholar] [CrossRef]
- Gupta, R.K.; Alqahtani, F.H.; Dawood, O.M.; Carini, M.; Criado, A.; Prato, M.; Garlapati, S.K.; Jones, G.; Sexton, J.; Persaud, K.C.; et al. Suspended Graphene Arrays for GaS Sensing Applications. 2D Mater. 2021, 8, 025006. [Google Scholar] [CrossRef]
- He, S.; Xie, W.; Zhang, Y.; Fang, S.; Zhou, D.; Gan, J.; Zhang, Z.; Du, J.; Du, C.; Wang, D. Probing the Influence of the Substrate Hole Shape on the Interaction between Helium Ions and Suspended Monolayer Graphene with Raman Spectroscopy. J. Phys. Chem. C 2021, 125, 2202–2211. [Google Scholar] [CrossRef]
- Northeast, D.B.; Knobel, R.G. Suspension and Simple Optical Characterization of Two-Dimensional Membranes. Mater. Res. Express 2018, 5, 035023. [Google Scholar] [CrossRef]
- Ruiz-Vargas, C.S.; Zhuang, H.L.; Huang, P.Y.; van der Zande, A.M.; Garg, S.; McEuen, P.L.; Muller, D.A.; Hennig, R.G.; Park, J. Softened Elastic Response and Unzipping in Chemical Vapor Deposition Graphene Membranes. Nano Lett. 2011, 11, 2259–2263. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Liu, F.; DeFazio, J.; Gaowei, M.; Narvaez Villarrubia, C.W.; Xie, J.; Sinsheimer, J.; Strom, D.; Pavlenko, V.; Jensen, K.L.; et al. Free-Standing Bialkali Photocathodes Using Atomically Thin Substrates. Adv. Mater. Interfaces 2018, 5, 1800249. [Google Scholar] [CrossRef]
- Liu, F.; Guo, L.; DeFazio, J.; Pavlenko, V.; Yamamoto, M.; Moody, N.A.; Yamaguchi, H. Photoemission from Bialkali Photocathodes through an Atomically Thin Protection Layer. ACS Appl. Mater. Interfaces 2022, 14, 1710–1717. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Liu, F.; DeFazio, J.; Narvaez Villarrubia, C.W.; Finkenstadt, D.; Shabaev, A.; Jensen, K.L.; Pavlenko, V.; Mehl, M.; Lambrakos, S.; et al. Active Bialkali Photocathodes on Free-Standing Graphene Substrates. npj 2D Mater. Appl. 2017, 1, 12. [Google Scholar] [CrossRef]
- Wirtz, C.; Berner, N.C.; Duesberg, G.S. Large-Scale Diffusion Barriers from CVD Grown Graphene. Adv. Mater. Interfaces 2015, 2, 1500082. [Google Scholar] [CrossRef]
- Wagner, S.; Weisenstein, C.; Smith, A.D.; Östling, M.; Kataria, S.; Lemme, M.C. Graphene Transfer Methods for the Fabrication of Membrane-Based Nems Devices. Microelectron. Eng. 2016, 159, 108–113. [Google Scholar] [CrossRef]
- Fan, X.; Forsberg, F.; Smith, A.D.; Schröder, S.; Wagner, S.; Rödjegård, H.; Fischer, A.C.; Östling, M.; Lemme, M.C.; Niklaus, F. Graphene Ribbons with Suspended Masses as Transducers in Ultra-Small Nanoelectromechanical Accelerometers. Nat. Electron. 2019, 2, 394–404. [Google Scholar] [CrossRef]
- Fan, X.; Forsberg, F.; Smith, A.D.; Schröder, S.; Wagner, S.; Östling, M.; Lemme, M.C.; Niklaus, F. Suspended Graphene Membranes with Attached Silicon Proof Masses as Piezoresistive Nanoelectromechanical Systems Accelerometers. Nano Lett. 2019, 19, 6788–6799. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-K.; Hwangbo, Y.; Kim, S.-M.; Lee, S.-K.; Lee, S.-M.; Kim, S.-S.; Kim, K.-S.; Lee, H.-J.; Choi, B.-I.; Song, C.-K.; et al. Monatomic Chemical-Vapor-Deposited Graphene Membranes Bridge a Half-Millimeter-Scale Gap. ACS Nano 2014, 8, 2336–2344. [Google Scholar] [CrossRef]
- Afyouni Akbari, S.; Ghafarinia, V.; Larsen, T.; Parmar, M.M.; Villanueva, L.G. Large Suspended Monolayer and Bilayer Graphene Membranes with Diameter up to 750 µm. Sci. Rep. 2020, 10, 6426. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Jin, C.; Lee, J.-C.; Jen, S.-F.; Suenaga, K.; Chiu, P.-W. Clean Transfer of Graphene for Isolation and Suspension. ACS Nano 2011, 5, 2362–2368. [Google Scholar] [CrossRef]
- Hu, Z.; Li, F.; Wu, H.; Liao, J.; Wang, Q.; Chen, G.; Shi, Z.; Zhu, Y.; Bu, S.; Zhao, Y.; et al. Rapid and Scalable Transfer of Large-Area Graphene Wafers. Adv. Mater. 2023, 35, 2300621. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Kang, B.; Suk, J.W.; Li, N.; Kim, K.S.; Ruoff, R.S.; Lee, W.H.; Cho, K. Clean Transfer of Wafer-Scale Graphene Via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons. ACS Nano 2015, 9, 4726–4733. [Google Scholar] [CrossRef]
- Capasso, A.; De Francesco, M.; Leoni, E.; Dikonimos, T.; Buonocore, F.; Lancellotti, L.; Bobeico, E.; Sarto, M.S.; Tamburrano, A.; De Bellis, G.; et al. Cyclododecane as Support Material for Clean and Facile Transfer of Large-Area Few-Layer Graphene. Appl. Phys. Lett. 2014, 105, 113101. [Google Scholar] [CrossRef]
- Kim, M.J.; Moreira, G.; Lisi, N.; Kim, N.; Shim, W.; Lee, G.-H.; Capasso, A. Solvent-Free Transfer of Monolayer Graphene with Recrystallized Cyclododecane. Appl. Phys. Lett. 2023, 123, 211602. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Fernandes, A.J.S.; Ben Hassine, M.; Ferreira, P.; Fortunato, E.; Costa, F.M. Millimeter-Sized Few-Layer Suspended Graphene Membranes. Appl. Mater. Today 2020, 21, 100879. [Google Scholar] [CrossRef]
- Yulaev, A.; Cheng, G.; Hight Walker, A.R.; Vlassiouk, I.V.; Myers, A.; Leite, M.S.; Kolmakov, A. Toward Clean Suspended CVD Graphene. RSC Adv. 2016, 6, 83954–83962. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.G.; Stekovic, D.; Li, W.X.; Arkook, B.; Haddon, R.C.; Bekyarova, E. Sublimation-Assisted Graphene Transfer Technique Based on Small Polyaromatic Hydrocarbons. Nanotechnology 2017, 28, 255701. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.-B.; Hu, Q.; Yeo, J.-H.; Kim, M.J.; Yoo, J.-B. Fabrication of a 100 × 100 mm2 Nanometer-Thick Graphite Pellicle for Extreme Ultraviolet Lithography by a Peel-Off and Camphor-Supported Transfer Approach. Nanoscale Adv. 2022, 4, 3824–3831. [Google Scholar] [CrossRef]
- Wang, B.; Cunning, B.V.; Kim, N.Y.; Kargar, F.; Park, S.Y.; Li, Z.C.; Joshi, S.R.; Peng, L.; Modepalli, V.; Chen, X.J.; et al. Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. Adv. Mater. 2019, 31, 1903039. [Google Scholar] [CrossRef]
- Wang, B.; Luo, D.; Li, Z.C.; Kwon, Y.; Wang, M.H.; Goo, M.; Jin, S.W.; Huang, M.; Shen, Y.T.; Shi, H.F.; et al. Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films. Adv. Mater. 2018, 30, 1800888. [Google Scholar] [CrossRef]
- Zhang, D.; Du, J.; Hong, Y.-L.; Zhang, W.; Wang, X.; Jin, H.; Burn, P.L.; Yu, J.; Chen, M.; Sun, D.-M.; et al. A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano 2019, 13, 5513–5522. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa, C.J.L.; Sun, J.; Lindvall, N.; Cole, M.T.; Nam, Y.; Löffler, M.; Olsson, E.; Teo, K.B.K.; Yurgens, A. Frame Assisted H2O Electrolysis Induced H2 Bubbling Transfer of Large Area Graphene Grown by Chemical Vapor Deposition on Cu. Appl. Phys. Lett. 2013, 102, 022101. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Quellmalz, A.; Wang, X.; Sawallich, S.; Uzlu, B.; Otto, M.; Wagner, S.; Wang, Z.; Prechtl, M.; Hartwig, O.; Luo, S.; et al. Large-Area Integration of Two-Dimensional Materials and Their Heterostructures by Wafer Bonding. Nat. Commun. 2021, 12, 917. [Google Scholar] [CrossRef]
- Regan, W.; Alem, N.; Alemán, B.; Geng, B.; Girit, Ç.; Maserati, L.; Wang, F.; Crommie, M.; Zettl, A. A Direct Transfer of Layer-Area Graphene. Appl. Phys. Lett. 2010, 96, 113102. [Google Scholar] [CrossRef]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef]
- Garcia-Sanchez, D.; van der Zande, A.M.; Paulo, A.S.; Lassagne, B.; McEuen, P.L.; Bachtold, A. Imaging Mechanical Vibrations in Suspended Graphene Sheets. Nano Lett. 2008, 8, 1399–1403. [Google Scholar] [CrossRef]
- Poot, M.; van der Zant, H.S.J. Nanomechanical Properties of Few-Layer Graphene Membranes. Appl. Phys. Lett. 2008, 92, 063111. [Google Scholar] [CrossRef]
- Sengupta, S.; Solanki, H.S.; Singh, V.; Dhara, S.; Deshmukh, M.M. Electromechanical Resonators as Probes of the Charge Density Wave Transition at the Nanoscale in NbSe2. Phys. Rev. B 2010, 82, 155432. [Google Scholar] [CrossRef]
- Singh, V.; Sengupta, S.; Solanki, H.S.; Dhall, R.; Allain, A.; Dhara, S.; Pant, P.; Deshmukh, M.M. Probing Thermal Expansion of Graphene and Modal Dispersion at Low-Temperature Using Graphene Nanoelectromechanical Systems Resonators. Nanotechnology 2010, 21, 165204. [Google Scholar] [CrossRef]
- Wong, C.L.; Annamalai, M.; Wang, Z.Q.; Palaniapan, M. Characterization of Nanomechanical Graphene Drum Structures. J. Micromech. Microeng. 2010, 20, 115029. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Deshpande, V.V.; DiRenno, F.A.; Gondarenko, A.; Heinz, D.B.; Liu, S.; Kim, P.; Hone, J. Radio Frequency Electrical Transduction of Graphene Mechanical Resonators. Appl. Phys. Lett. 2010, 97, 243111. [Google Scholar] [CrossRef]
- Barton, R.A.; Ilic, B.; van der Zande, A.M.; Whitney, W.S.; McEuen, P.L.; Parpia, J.M.; Craighead, H.G. High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators. Nano Lett. 2011, 11, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A. Nonlinear Damping in Mechanical Resonators Made from Carbon Nanotubes and Graphene. Nat. Nanotechnol. 2011, 6, 339–342. [Google Scholar] [CrossRef]
- Annamalai, M.; Mathew, S.; Jamali, M.; Zhan, D.; Palaniapan, M. Elastic and Nonlinear Response of Nanomechanical Graphene Devices. J. Micromech. Microeng. 2012, 22, 10502. [Google Scholar] [CrossRef]
- Zalalutdinov, M.K.; Robinson, J.T.; Junkermeier, C.E.; Culbertson, J.C.; Reinecke, T.L.; Stine, R.; Sheehan, P.E.; Houston, B.H.; Snow, E.S. Engineering Graphene Mechanical Systems. Nano Lett. 2012, 12, 4212–4218. [Google Scholar] [CrossRef]
- Cooper, R.C.; Lee, C.; Marianetti, C.A.; Wei, X.; Hone, J.; Kysar, J.W. Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide. Phys. Rev. B 2013, 87, 035423. [Google Scholar] [CrossRef]
- Li, P.; You, Z.; Cui, T.H. Molybdenum Disulfide Dc Contact Mems Shunt Switch. J. Micromech. Microeng. 2013, 23, 045026. [Google Scholar] [CrossRef]
- Yamashiro, Y.; YOhno; Maehashi, K.; Inoue, K.; Matsumoto, K. Floating-Bridge Structure of Graphene with Ionic-Liquid Gate. Phys. Status. Solidi. B 2013, 10, 1604–1607. [Google Scholar] [CrossRef]
- Singh, V.; Bosman, S.J.; Schneider, B.H.; Blanter, Y.M.; Castellanos-Gomez, A.; Steele, G.A. Optomechanical Coupling between a Multilayer Graphene Mechanical Resonator and a Superconducting Microwave Cavity. Nat. Nanotechnol. 2014, 9, 820–824. [Google Scholar] [CrossRef]
- Song, X.; Oksanen, M.; Li, J.; Hakonen, P.J.; Sillanpää, M.A. Graphene Optomechanics Realized at Microwave Frequencies. Phys. Rev. Lett. 2014, 113, 027404. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Lee, Y.-C.; Lee, Y.-W.; Chang, S.-W.; Ma, D.-L.; Lin, B.-C.; Chen, H.-L. Air Gap-Based Cavities Dramatically Enhance the True Intrinsic Spectral Signals of Suspended and Pristine Two-Dimensional Materials. J. Phys. Chem. C 2019, 123, 5667–5679. [Google Scholar] [CrossRef]
- Liu, X.; Jin, J.; Liu, J.; Sun, L.; Yang, C.; Li, Y.J. Molten Liquid Metal Motion Assisted Preparation of Suspended Graphene Arrays. Mater. Lett. 2022, 314, 131874. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Anderson, T.J.; Culbertson, J.C.; Jernigan, G.G.; Hobart, K.D.; Kub, F.J.; Tadjer, M.J.; Tedesco, J.L.; Hite, J.K.; Mastro, M.A.; et al. Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. ACS Nano 2010, 4, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Oksanen, M.; Sillanpää, M.A.; Craighead, H.G.; Parpia, J.M.; Hakonen, P.J. Stamp Transferred Suspended Graphene Mechanical Resonators for Radio Frequency Electrical Readout. Nano Lett. 2012, 12, 198–202. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; van Leeuwen, R.; Buscema, M.; van der Zant, H.S.J.; Steele, G.A.; Venstra, W.J. Single-Layer MoS2 Mechanical Resonators. Adv. Mater. 2013, 25, 6719–6723. [Google Scholar] [CrossRef]
- Lee, G.H.; Cooper, R.C.; An, S.J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerherg, A.G.; Lee, C.; Crawford, B.; Oliver, W.; et al. High-Strength Chemical-Vapor Deposited Graphene and Grain Boundaries. Science 2013, 340, 1073–1076. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Hallam, T.; Moldovan, C.F.; Gajewski, K.; Ionescu, A.M.; Duesberg, G.S. Large Area Suspended Graphene for Nano-Mechanical Devices. Phys. Status Solidi B-Basic Solid State Phys. 2015, 252, 2429–2432. [Google Scholar] [CrossRef]
- Lee, M.; Davidovikj, D.; Sajadi, B.; Šiškins, M.; Alijani, F.; van der Zant, H.S.J.; Steeneken, P.G. Sealing Graphene Nanodrums. Nano Lett. 2019, 19, 5313–5318. [Google Scholar] [CrossRef]
- Yang, X.; Ta, H.Q.; Li, W.; Mendes, R.G.; Liu, Y.; Shi, Q.; Ullah, S.; Bachmatiuk, A.; Luo, J.; Liu, L.; et al. In-Situ Observations of Novel Single-Atom Thick 2D Tin Membranes Embedded in Graphene. Nano Res. 2021, 14, 747–753. [Google Scholar] [CrossRef]
- Lukas, S.; Esteki, A.; Rademacher, N.; Jangra, V.; Gross, M.; Wang, Z.; Ngo, H.-D.; Bäuscher, M.; Mackowiak, P.; Höppner, K.; et al. High-Yield Large-Scale Suspended Graphene Membranes over Closed Cavities for Sensor Applications. ACS Nano 2024, 18, 25614–25624. [Google Scholar] [CrossRef]
- Açıkgöz, H.N.; Shin, D.H.; van der Knijff, I.C.; Katan, A.J.; Yang, X.; Steeneken, P.G.; Verbiest, G.J.; Caneva, S. Actuation and Mapping of Surface Acoustic Wave Induced High-Frequency Wavefields on Suspended Graphene Membranes. ACS Nano 2025, 19, 14044–14052. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Moreno, M.; Castellanos-Gomez, A.; Rubio-Bollinger, G.; Gomez-Herrero, J.; Agraït, N. Ultralong Natural Graphene Nanoribbons and Their Electrical Conductivity. Small 2009, 5, 924–927. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Ko, T.-J.; Okogbue, E.; Han, S.S.; Shawkat, M.S.; Kaium, M.G.; Oh, K.H.; Chung, H.-S.; Jung, Y. Centimeter-Scale Green Integration of Layer-by-Layer 2D TMD vdW Heterostructures on Arbitrary Substrates by Water-Assisted Layer Transfer. Sci. Rep. 2019, 9, 1641. [Google Scholar] [CrossRef]
- Watson, M.D.; Rajan, A.; Antonelli, T.; Underwood, K.; Markovic, I.; Mazzola, F.; Clark, O.J.; Siemann, G.R.; Biswas, D.; Hunter, A.; et al. Strong-Coupling Charge Density Wave in Monolayer TiSe2. 2D Mater. 2021, 8, 015004. [Google Scholar] [CrossRef]
- Cai, J.; Chen, H.; Ke, Y.; Deng, S. A Capillary-Force-Assisted Transfer for Monolayer Transition-Metal-Dichalcogenide Crystals with High Utilization. ACS Nano 2022, 16, 15016–15025. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. [Google Scholar] [CrossRef]
- Feldman, B.E.; Krauss, B.; Smet, J.H.; Yacoby, A. Unconventional Sequence of Fractional Quantum Hall States in Suspended Graphene. Science 2012, 337, 1196–1199. [Google Scholar] [CrossRef]
- Ki, D.-K.; Morpurgo, A.F. High-Quality Multiterminal Suspended Graphene Devices. Nano Lett. 2013, 13, 5165–5170. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Shi, J.; Wu, X.; Wu, K.; Zhang, S.; Sui, X.; Du, W.; Yue, S.; Liang, Y.; Jiang, C.; Wang, Z.; et al. Giant Enhancement and Directional Second Harmonic Emission from Monolayer WS2 on Silicon Substrate Via Fabry-Pérot Micro-Cavity. ACS Nano 2022, 16, 13933–13941. [Google Scholar] [CrossRef]
- Liao, Y.-T.; Peng, S.-Y.; Chuang, K.-W.; Liao, Y.-C.; Kuramitsu, Y.; Woon, W.-Y. Exploring the Mechanical Properties of Nanometer-Thick Elastic Films through Micro-Drop Impinging on Large-Area Suspended Graphene. Nanoscale 2022, 14, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Kang, J.; Su Kim, E.; Lee, S.; Lee, C. Suspended single-layer MoS2 devices. J. Appl. Phys. 2013, 114, 164509. [Google Scholar] [CrossRef]
- Yan, R.; Simpson, J.R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Hight Walker, A.R.; Xing, H.G. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano 2014, 8, 986–993. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano 2011, 5, 9703–9709. [Google Scholar] [CrossRef] [PubMed]
- Falin, A.; Cai, Q.; Santos, E.J.G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; et al. Mechanical Properties of Atomically Thin Boron Nitride and the Role of Interlayer Interactions. Nat. Commun. 2017, 8, 15815. [Google Scholar] [CrossRef]
- Yoshida, M.; Kudo, K.; Nohara, M.; Iwasa, Y. Metastable Superconductivity in Two-Dimensional IrTe2 Crystals. Nano Lett. 2018, 18, 3113–3117. [Google Scholar] [CrossRef]
- Mizuno, N.; Nielsen, B.; Du, X. Ballistic-Like Supercurrent in Suspended Graphene Josephson Weak Links. Nat. Commun. 2013, 4, 2716. [Google Scholar] [CrossRef]
- Zheliuk, O.; Lu, J.M.; Chen, Q.H.; Yumin, A.A.E.; Golightly, S.; Ye, J.T. Josephson Coupled Ising Pairing Induced in Suspended MoS2 Bilayers by Double-Side Ionic Gating. Nat. Nanotechnol. 2019, 14, 1123–1128. [Google Scholar] [CrossRef]
- Potirniche, I.-D.; Maciejko, J.; Nandkishore, R.; Sondhi, S.L. Superconductivity of Disordered Dirac Fermions in Graphene. Phys. Rev. B 2014, 90, 094516. [Google Scholar] [CrossRef]
- Wu, F.; MacDonald, A.H.; Martin, I. Theory of Phonon-Mediated Superconductivity in Twisted Bilayer Graphene. Phys. Rev. Lett. 2018, 121, 257001. [Google Scholar] [CrossRef]
- Lu, J.M.; Zheliuk, O.; Leermakers, I.; Yuan, N.F.Q.; Zeitler, U.; Law, K.T.; Ye, J.T. Evidence for Two-Dimensional Ising Superconductivity in Gated MoS2. Science 2015, 350, 1353–1357. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.T.; Zhang, Y.J.; Akashi, R.; Bahramy, M.S.; Arita, R.; Iwasa, Y. Superconducting Dome in a Gate-Tuned Band Insulator. Science 2012, 338, 1193–1196. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Cui, T. Ultra-Sensitive Suspended Graphene Nanocomposite Cancer Sensors with Strong Suppression of Electrical Noise. Biosens. Bioelectron. 2012, 31, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.; Li, K.; Ishibashi, K.; Kawano, Y. A Terahertz Video Camera Patch Sheet with an Adjustable Design Based on Self-Aligned, 2D, Suspended Sensor Array Patterning. Adv. Funct. Mater. 2021, 31, 2008931. [Google Scholar] [CrossRef]
- Liu, Q.; He, C.; Ding, J.; Zhang, W.; Fan, X. Modeling and Simulation of 2D Transducers Based on Suspended Graphene-Based Heterostructures in Nanoelectromechanical Pressure Sensors. ACS Appl. Mater. Interfaces 2024, 16, 59066–59076. [Google Scholar] [CrossRef]
- Wan, Z.Y.; Liu, H.Z.; Zheng, Y.B.; Ma, Y.H.; Liu, K.H.; Zhou, X.; Liu, C.; Liu, K.H.; Wang, E.E. A Review of Acoustic Devices Based on Suspended 2D Materials and Their Composites. Adv. Funct. Mater. 2024, 34, 2303519. [Google Scholar] [CrossRef]
- Moser, J.; Barreiro, A.; Bachtold, A. Current-Induced Cleaning of Graphene. Appl. Phys. Lett. 2007, 91, 163513. [Google Scholar] [CrossRef]
- Smith, A.D.; Niklaus, F.; Paussa, A.; Schröder, S.; Fischer, A.C.; Sterner, M.; Wagner, S.; Vaziri, S.; Forsberg, F.; Esseni, D.; et al. Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors. ACS Nano 2016, 10, 9879–9886. [Google Scholar] [CrossRef]
- Smith, A.D.; Elgammal, K.; Fan, X.; Lemme, M.C.; Delin, A.; Råsander, M.; Bergqvist, L.; Schröder, S.; Fischer, A.C.; Niklaus, F.; et al. Graphene-Based CO2 Sensing and Its Cross-Sensitivity with Humidity. RSC Adv. 2017, 7, 22329–22339. [Google Scholar] [CrossRef]
- Gautam, M.; Jayatissa, A.H. Graphene Based Field Effect Transistor for the Detection of Ammonia. J. Appl. Phys. 2012, 112, 064304. [Google Scholar] [CrossRef]
- Olson, E.J.; Ma, R.; Sun, T.; Ebrish, M.A.; Haratipour, N.; Min, K.; Aluru, N.R.; Koester, S.J. Capacitive Sensing of Intercalated H2O Molecules Using Graphene. ACS Appl. Mater. Interfaces 2015, 7, 25804–25812. [Google Scholar] [CrossRef]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef]
- Li, M.; Wu, C.; Zhao, S.; Deng, T.; Wang, J.; Liu, Z.; Wang, L.; Wang, G. Pressure Sensing Element Based on the BN–Graphene–BN Heterostructure. Appl. Phys. Lett. 2018, 112, 143502. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Cao, Y.; Li, M.; Wei, S.; Wang, J. Highly Sensitive Graphene MEMS Pressure Sensor with Integrated Membrane and Cross-Beam with Cavity for Extended Pressure Range Testing. ACS Appl. Electron. Mater. 2025, 7, 3983–3993. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Kim, S.J.; Lee, Y.; Kim, J.-S.; Jung, W.-B.; Yoo, H.-W.; Kim, J.; Jung, H.-T. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers. ACS Nano 2015, 9, 9314–9321. [Google Scholar] [CrossRef]
- Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-Sensitivity Fiber-Tip Pressure Sensor with Graphene Diaphragm. Opt. Lett. 2012, 37, 2493–2495. [Google Scholar] [CrossRef]
- Yu, F.; Liu, Q.; Gan, X.; Hu, M.; Zhang, T.; Li, C.; Kang, F.; Terrones, M.; Lv, R. Ultrasensitive Pressure Detection of Few-Layer MoS2. Adv. Mater. 2017, 29, 1603266. [Google Scholar] [CrossRef]
- Davidovikj, D.; Scheepers, P.H.; van der Zant, H.S.J.; Steeneken, P.G. Static Capacitive Pressure Sensing Using a Single Graphene Drum. ACS Appl. Mater. Interfaces 2017, 9, 43205–43210. [Google Scholar] [CrossRef] [PubMed]
- Šiškins, M.; Lee, M.; Wehenkel, D.; van Rijn, R.; de Jong, T.W.; Renshof, J.R.; Hopman, B.C.; Peters, W.S.J.M.; Davidovikj, D.; van der Zant, H.S.J.; et al. Sensitive Capacitive Pressure Sensors Based on Graphene Membrane Arrays. Microsyst. Nanoeng. 2020, 6, 102. [Google Scholar] [CrossRef]
- Lee, J.; Wang, Z.; He, K.; Shan, J.; Feng, P.X.L. Air Damping of Atomically Thin MoS2 Nanomechanical Resonators. Appl. Phys. Lett. 2014, 105, 023104. [Google Scholar] [CrossRef]
- Romijn, J.; Vollebregt, S.; Dolleman, R.J.; Singh, M.; Zant, H.S.J.v.d.; Steeneken, P.G.; Sarro, P.M. A Miniaturized Low Power Pirani Pressure Sensor Based on Suspended Graphene. In Proceedings of the 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Singapore, 22–26 April 2018. [Google Scholar]
- Yang, Y.T.; Callegari, C.; Feng, X.L.; Ekinci, K.L.; Roukes, M.L. Zeptogram-Scale Nanomechanical Mass Sensing. Nano Lett. 2006, 6, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A Nanomechanical Mass Sensor with Yoctogram Resolution. Nat. Nanotechnol. 2012, 7, 301–304. [Google Scholar] [CrossRef]
- Lee, B.K.; Ryu, J.H.; Baek, I.-B.; Kim, Y.; Jang, W.I.; Kim, S.-H.; Yoon, Y.S.; Kim, S.H.; Hong, S.-G.; Byun, S.; et al. Silicone-Based Adhesives with Highly Tunable Adhesion Force for Skin-Contact Applications. Adv. Healthc. Mater. 2017, 6, 1700621. [Google Scholar] [CrossRef]
- Lee, H.-L.; Yang, Y.-C.; Chang, W.-J. Mass Detection Using a Graphene-Based Nanomechanical Resonator. Jpn. J. Appl. Phys. 2013, 52, 025101. [Google Scholar] [CrossRef]
- Dolleman, R.J.; Davidovikj, D.; Cartamil-Bueno, S.J.; van der Zant, H.S.J.; Steeneken, P.G. Graphene Squeeze-Film Pressure Sensors. Nano Lett. 2016, 16, 568–571. [Google Scholar] [CrossRef]
- Dolleman, R.J.; Hsu, M.; Vollebregt, S.; Sader, J.E.; van der Zant, H.S.J.; Steeneken, P.G.; Ghatkesar, M.K. Mass Measurement of Graphene Using Quartz Crystal Microbalances. Appl. Phys. Lett. 2019, 115, 053102. [Google Scholar] [CrossRef]
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating Mems and Ics. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef]
- Ding, J.; Ma, H.; He, C.; Zhang, W.; Fan, X. Two Layers of Carbon Atoms Enable Ultrasensitive Detection of Acceleration. ACS Nano 2025, 19, 12253–12261. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.K.; Wang, K.; Li, H.Z.; Gao, M.; Li, L.H.; Kuang, M.X.; Zhao, Y.S.; Li, M.Z.; Song, Y.L. Direct-Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small 2017, 13, 1603217. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, J.H.; Kim, N.; Joshi, R.; Lee, G.H. Mechanical Properties of Two-Dimensional Materials and Their Applications. J. Phys. D. Appl. Phys. 2019, 52, 083001. [Google Scholar] [CrossRef]
- Lee, K.-R.; Jang, S.H.; Jung, I. Acoustic Performance of Dual-Electrode Electrostatic Sound Generators Based on CVD Graphene on Polyimide Film. Nanotechnology 2018, 29, 325502. [Google Scholar] [CrossRef]
- Zhou, Q.; Zettl, A. Electrostatic Graphene Loudspeaker. Appl. Phys. Lett. 2013, 102, 223109. [Google Scholar] [CrossRef]
- Lee, K.-R.; Seo, J.; Kwon, S.S.; Kim, N.; Lee, Y.J.; Son, J.G.; Lee, S.H. Vibroacoustic Characteristics of a Specific Patterned Polymer with Graphene for an Electrostatic Speaker. ACS Appl. Mater. Interfaces 2023, 15, 7319–7328. [Google Scholar] [CrossRef]
- Li, H.L.; Pang, S.P.; Wu, S.; Feng, X.L.; Müllen, K.; Bubeck, C. Layer-by-Layer Assembly and UV Photoreduction of Graphene-Polyoxometalate Composite Films for Electronics. J. Am. Chem. Soc. 2011, 133, 9423–9429. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Sun, H.; Li, H.P.; Peng, H.S. Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? Adv. Mater. 2013, 25, 5153–5176. [Google Scholar] [CrossRef]
- Lei, W.; Si, W.M.; Xu, Y.J.; Gu, Z.Y.; Hao, Q.L. Conducting Polymer Composites with Graphene for Use in Chemical Sensors and Biosensors. Microchim. Acta 2014, 181, 707–722. [Google Scholar] [CrossRef]
- Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E.O.; Marvi, H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. Adv. Mater. 2021, 33, 2003139. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.R.; Liu, C.Y.; Chen, R.L. Optimization of Microspeaker Diaphragm Pattern Using Combined Finite Element-Lumped Parameter Models. IEEE Trans. Magn. 2008, 44, 2049–2057. [Google Scholar] [CrossRef]
- Khan, A.U.; Zeltzer, G.; Speyer, G.; Croft, Z.L.; Guo, Y.C.; Nagar, Y.; Artel, V.; Levi, A.; Stern, C.; Naveh, D.; et al. Mutually Reinforced Polymer-Graphene Bilayer Membranes for Energy-Efficient Acoustic Transduction. Adv. Mater. 2021, 33, 2004053. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Hong, T.K.; Kang, D.; Lee, J.; Heo, M.; Kim, J.Y.; Kim, B.S.; Shin, H.S. Highly Controllable Transparent and Conducting Thin Films Using Layer-by-Layer Assembly of Oppositely Charged Reduced Graphene Oxides. J. Mater. Chem. 2011, 21, 3438–3442. [Google Scholar] [CrossRef]
- Chavez-Valdez, A.; Shaffer, M.S.P.; Boccaccini, A.R. Applications of Graphene Electrophoretic Deposition. A Review. J. Phys. Chem. B 2013, 117, 1502–1515. [Google Scholar] [CrossRef]
- Eda, G.; Lin, Y.Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.A.; Chen, I.S.; Chen, C.W.; Chhowalla, M. Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010, 22, 505–509. [Google Scholar] [CrossRef]
- Beranek, L.L. Loudspeakers and Microphones. J. Acoust. Soc. Am. 1954, 26, 618–629. [Google Scholar] [CrossRef]
- Guo, X.; An, J.; Wu, H.; Cai, Z.; Wang, P. Graphene Acoustic Transducers Based on Electromagnetic Interactions. Ultrasonics 2021, 114, 106420. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; An, J.; Zhang, Q.; Wang, R.; Yu, X. Experimental Investigation on Characteristics of Graphene Acoustic Transducers Driven by Electrostatic and Electromagnetic Forces. Ultrasonics 2023, 127, 106857. [Google Scholar] [CrossRef]
- Kumar, P.; Sriramdas, R.; Aliev, A.E.; Blottman, J.B.; Mayo, N.K.; Baughman, R.H.; Priya, S. Understanding the Low Frequency Response of Carbon Nanotube Thermoacoustic Projectors. J. Sound Vib. 2021, 498, 115940. [Google Scholar] [CrossRef]
- Qiao, Y.; Gou, G.; Wu, F.; Jian, J.; Li, X.; Hirtz, T.; Zhao, Y.; Zhi, Y.; Wang, F.; Tian, H.; et al. Graphene-Based Thermoacoustic Sound Source. ACS Nano 2020, 14, 3779–3804. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Yang, Y.; Li, C.; Mi, W.T.; Mohammad, M.A.; Ren, T.L. A Flexible, Transparent and Ultrathin Single-Layer Graphene Earphone. RSC Adv. 2015, 5, 17366–17371. [Google Scholar] [CrossRef]
- Tian, H.; Xie, D.; Yang, Y.; Ren, T.-L.; Wang, Y.-F.; Zhou, C.-J.; Peng, P.-G.; Wang, L.-G.; Liu, L.-T. Single-Layer Graphene Sound-Emitting Devices: Experiments and Modeling. Nanoscale 2012, 4, 2272–2277. [Google Scholar] [CrossRef] [PubMed]
- Gou, G.-Y.; Jin, M.L.; Lee, B.-J.; Tian, H.; Wu, F.; Li, Y.-T.; Ju, Z.-Y.; Jian, J.-M.; Geng, X.-S.; Ren, J.; et al. Flexible Two-Dimensional Ti3C2 MXene Films as Thermoacoustic Devices. ACS Nano 2019, 13, 12613–12620. [Google Scholar] [CrossRef]
- Tian, H.; Ren, T.-L.; Xie, D.; Wang, Y.-F.; Zhou, C.-J.; Feng, T.-T.; Fu, D.; Yang, Y.; Peng, P.-G.; Wang, L.-G.; et al. Graphene-on-Paper Sound Source Devices. ACS Nano 2011, 5, 4878–4885. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.W.; Kirk, K.; Hao, Y.; Hall, N.A.; Ruoff, R.S. Thermoacoustic Sound Generation from Monolayer Graphene for Transparent and Flexible Sound Sources. Adv. Mater. 2012, 24, 6342–6347. [Google Scholar] [CrossRef]
- Kim, C.S.; Hong, S.K.; Lee, J.-M.; Kang, D.-S.; Cho, B.J.; Choi, J.-W. Free-Standing Graphene Thermophone on a Polymer-Mesh Substrate. Small 2016, 12, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Varghese, A.; Sharma, A.; Prasad, M.; Janyani, V.; Yadav, R.P.; Elgaid, K. Recent Development and Futuristic Applications of MEMS Based Piezoelectric Microphones. Sens. Actuators A Phys. 2022, 347, 113887. [Google Scholar] [CrossRef]
- Scheeper, P.R.; Vanderdonk, A.G.H.; Olthuis, W.; Bergveld, P. A Review of Silicon Microphones. Sens. Actuators A Phys. 1994, 44, 1–11. [Google Scholar] [CrossRef]
- Wood, G.S.; Torin, A.; Al-mashaal, A.K.; Smith, L.S.; Mastropaolo, E.; Newton, M.J.; Cheung, R. Design and Characterization of a Micro-Fabricated Graphene-Based MEMS Microphone. IEEE Sens. J. 2019, 19, 7234–7242. [Google Scholar] [CrossRef]
- Pezone, R.; Baglioni, G.; Sarro, P.M.; Steeneken, P.G.; Vollebregt, S. Sensitive Transfer-Free Wafer-Scale Graphene Microphones. ACS Appl. Mater. Interfaces 2022, 14, 21705–21712. [Google Scholar] [CrossRef]
- Han, J.T.; Kim, B.K.; Woo, J.S.; Jang, J.I.; Cho, J.Y.; Jeong, H.J.; Jeong, S.Y.; Seo, S.H.; Lee, G.W. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing. ACS Appl. Mater. Interfaces 2017, 9, 7780–7786. [Google Scholar] [CrossRef]
- Xu, J.; Wood, G.S.; Mastropaolo, E.; Newton, M.J.; Cheung, R. Realization of a Graphene/PMMA Acoustic Capacitive Sensor Released by Silicon Dioxide Sacrificial Layer. ACS Appl. Mater. Interfaces 2021, 13, 38792–38798. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Saravanapavanantham, M.; Chua, M.R.; Lang, J.H.; Bulović, V. A Versatile Acoustically Active Surface Based on Piezoelectric Microstructures. Microsyst. Nanoeng. 2022, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, S.; Glacer, C.; Wagner, S.; Pindl, S.; Lemme, M.C. Graphene Membranes for Hall Sensors and Microphones Integrated with Cmos-Compatible Processes. ACS Appl. Nano Mater. 2019, 2, 5079–5085. [Google Scholar] [CrossRef]
- Wang, P.; Ding, J.; Chen, W.; Li, S.; Zhang, B.; Lu, H.; Li, J.; Li, Y.; Fu, Q.; Dai, T.; et al. Plasmonic Feynman Gate Based on Suspended Graphene Nano-Ribbon Waveguides at THz Wavelengths. IEEE Photon. J. 2019, 11, 4801109. [Google Scholar] [CrossRef]
- Safinezhad, A.; Eslami, M.R.; Jafari Jozani, K.; Rezaei, M.H. Ultra-Compact All-Optical Reversible Feynman Gate Based on Suspended Graphene Plasmonic Waveguides. Opt. Quantum Electron. 2022, 54, 295. [Google Scholar] [CrossRef]
- Shin, H.; Lee, S. Fabrication of Suspended Graphene Field-Effect Transistors by the Sandwich Method. Curr. Appl. Phys. 2023, 48, 42–46. [Google Scholar] [CrossRef]
- Abidi, I.H.; Bhoriya, A.; Vashishtha, P.; Giridhar, S.P.; Mayes, E.L.H.; Sehrawat, M.; Verma, A.K.; Aggarwal, V.; Gupta, T.; Singh, H.K.; et al. Oxidation-Induced Modulation of Photoresponsivity in Monolayer MoS2 with Sulfur Vacancies. Nanoscale 2024, 16, 19834–19843. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.T.; Tan, C.; Li, Y.R.; Chen, Y.; Li, Z.Y.; Gao, L.J.; Yang, L.; Wang, Z.G. Wang. Strain Tune Suspended MoS2 for Polarization Photodetection. Phys. Status Solidi-R 2023, 17, 2300101. [Google Scholar] [CrossRef]
- Thakar, K.; Mukherjee, B.; Grover, S.; Kaushik, N.; Deshmukh, M.; Lodha, S. Multilayer ReS2 Photodetectors with Gate Tunability for High Responsivity and High-Speed Applications. ACS Appl. Mater. Interfaces 2018, 10, 36512–36522. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Liu, Y.; Yang, X.; Wang, C.; Xin, W.; Li, Y.; Liu, W.; Xu, H. Suspended Few-Layer GaS Photodetector with Sensitive Fast Response. Mater. Des. 2021, 212, 110233. [Google Scholar] [CrossRef]
- Prajapat, P.; Vashishtha, P.; Gupta, G. Gas-Modulated Optoelectronic Properties of Monolayer MoS2 for Photodetection Applications. APL Energy 2024, 2, 046103. [Google Scholar] [CrossRef]
- Vashishtha, P.; Abidi, I.H.; Giridhar, S.P.; Verma, A.K.; Prajapat, P.; Bhoriya, A.; Murdoch, B.J.; Tollerud, J.O.; Xu, C.; Davis, J.A.; et al. CVD-Grown Monolayer MoS2 and GaN Thin Film Heterostructure for a Self-Powered and Bidirectional Photodetector with an Extended Active Spectrum. ACS Appl. Mater. Interfaces 2024, 16, 31294–31303. [Google Scholar] [CrossRef]
Fabrications | Yield | Challenges | Applications | References | |
---|---|---|---|---|---|
Wet transfer | Two-step PMMA | >50% | Transfer integrity, PMMA residue removal | Most 2D materials | [48] |
PMMA as support layer (2-layer Gr) | 2 × 3 µm2 | Film flatness, interlayer/surface PMMA residue | [49] | ||
Inverted floating method | ~50% for 200 μm suspended graphene | Device design, reagent flow control | [50] | ||
Cyclododecane as support layer | 99% integrity (<10 μm) | Graphene-TEM grid adhesion, etchant residue | [51] | ||
Substrate-supported transfer | ~99.5% coverage (GSAMs) | Graphene-TEM grid adhesion | [52] | ||
Dry transfer | Mechanical exfoliation | Small-batch lab preparation | Large-area high-quality films | [29] | |
Dry stamp transfer | [53] |
Graphene | Suspended Graphene | MoS2 | Suspended MoS2 | h-BN | Suspended h-BN | |
---|---|---|---|---|---|---|
Mobility | 2000–15,000 cm2/Vs [30] | 250,000 cm2/Vs [30] | 0.1 cm2/Vs [135] | 0.9 cm2/Vs [135] | - | - |
Thermal conductivity | 600 W/mK [30] | 2000–5000 W/mK [30] | - | 34.5 ± 4 W/mK [136] | 400 W/mK [33] | 751 W/mK [33] |
Young modulus | 1 TPa [137] | 0.27 GPa [138] | 0.33 ± 0.07 Tpa [135] | - | 0.865 ± 0.073 TPa [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, M.; Wang, Q.; Liang, Y.; Wei, J.; Li, H.; Liu, F. Recent Advances in Suspended 2D Materials and Their Applications. Nanomaterials 2025, 15, 929. https://doi.org/10.3390/nano15120929
Zhang X, Li M, Wang Q, Liang Y, Wei J, Li H, Liu F. Recent Advances in Suspended 2D Materials and Their Applications. Nanomaterials. 2025; 15(12):929. https://doi.org/10.3390/nano15120929
Chicago/Turabian StyleZhang, Xuanshuo, Min Li, Qingya Wang, Yuxian Liang, Jing Wei, Hongbo Li, and Fangze Liu. 2025. "Recent Advances in Suspended 2D Materials and Their Applications" Nanomaterials 15, no. 12: 929. https://doi.org/10.3390/nano15120929
APA StyleZhang, X., Li, M., Wang, Q., Liang, Y., Wei, J., Li, H., & Liu, F. (2025). Recent Advances in Suspended 2D Materials and Their Applications. Nanomaterials, 15(12), 929. https://doi.org/10.3390/nano15120929