Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Li, J.; Zhang, W.; Chang, H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 2015, 6, 6705–6716. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Late, D.J.; Kumar, A.; Patel, S.; Singh, J. 2D Layered Transition Metal Dichalcogenides (MoS2): Synthesis, Applications and Theoretical Aspects. Appl. Mater. Today 2018, 13, 242–270. [Google Scholar] [CrossRef]
- Yu, J.; Hu, X.; Li, H.; Zhou, X.; Zhai, T. Large-Scale Synthesis of 2D Metal Dichalcogenides. J. Mater. Chem. C 2018, 6, 4627. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical Synthesis of 2D Materials. Chem. Soc. Rev. 2018, 47, 8744. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhang, T.; Feng, X. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chem. Rev. 2018, 118, 6189–6235. [Google Scholar] [CrossRef]
- Alam, S.; Chowdhury, M.A.; Shahid, A.; Alam, R.; Rahim, A. Synthesis of emerging two-dimensional (2D) materials—Advances, challenges and prospects. FlatChem 2021, 30, 100305. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kwak, J.; Ciobanu, C.V.; Kwon, S.Y. Recent Developments in Controlled Vapor-Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. Adv. Mater. 2019, 31, 1804939. [Google Scholar] [CrossRef]
- Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O.L.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W.; et al. Large-Area Epitaxial Monolayer MoS2. ACS Nano 2015, 9, 4611–4620. [Google Scholar] [CrossRef]
- Seravalli, L.; Bosi, M. A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes. Materials 2021, 14, 7590. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, X.; Wei, J.; Wang, S.; Chen, S.; Wu, S.; Ji, M.; Sun, Z.; Xu, Z.; Bao, W.; et al. 2-Inch Growth of Uniform MoS2 Monolayer for Integrated Circuit Manufacture. Nat. Mater. 2023, 22, 1324–1331. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, J.; Li, X.; Tian, J.; Liang, J.; Li, N.; Ji, D.; Xian, L.; Guo, Y.; Li, L.; et al. Layer-by-Layer Epitaxy of Multi-Layer MoS2 Wafers. Natl. Sci. Rev. 2022, 9, nwac077. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Galfsky, T.; Sun, Z.; Xia, F.; Lin, E.; Lee, Y.-H.; Kéna-Cohen, S.; Menon, V.M. Strong Light–Matter Coupling in Two-Dimensional Atomic Crystals. Nat. Photonics 2015, 9, 30–34. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Nalwa, H.S. A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wan, R.; Li, L.; Liu, Z.; Yan, S.; Li, L.; Wang, J.; Gao, Y. Research Progress on Improving the Performance of MoS 2 Photodetector. J. Opt. 2022, 24, 104003. [Google Scholar] [CrossRef]
- Ye, Z.; Tan, C.; Huang, X.; Ouyang, Y.; Yang, L.; Wang, Z.; Dong, M. Emerging MoS2 Wafer-Scale Technique for Integrated Circuits. Nano-Micro Lett. 2023, 15, 38. [Google Scholar] [CrossRef]
- Seo, J.; Lee, J.; Baek, S.; Jung, W.; Oh, N.K.; Son, E.; Park, H. Liquid Precursor-Mediated Epitaxial Growth of Highly Oriented 2D van Der Waals Semiconductors toward High-Performance Electronics. ACS Appl. Electron. Mater. 2021, 3, 5528–5536. [Google Scholar] [CrossRef]
- Zhang, T.; Fujisawa, K.; Zhang, F.; Liu, M.; Lucking, M.C.; Gontijo, R.N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T.; et al. Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano 2020, 14, 4326–4335. [Google Scholar] [CrossRef]
- Tong, S.W.; Medina, H.; Liao, W.; Wu, J.; Wu, W.; Chai, J.; Yang, M.; Abutaha, A.; Wang, S.; Zhu, C.; et al. Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS2 for High-Performance Field-Effect Transistors. ACS Appl. Mater. Interfaces 2019, 11, 14239–14248. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Yang, D.; Jing, F.; Qiu, H.; Liu, H.; Hu, Z. Embedded Lanthanoid Ions Modulated the Periodic Luminescence of Transition Metal Dichalcogenide Monolayers Prepared from an Aqueous Orecursor. J. Mater. Chem. C Mater. 2022, 10, 8061–8069. [Google Scholar] [CrossRef]
- Qin, Z.; Loh, L.; Wang, J.; Xu, X.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J.Z.; Schultz, T.; et al. Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing. ACS Nano 2019, 13, 10768–10775. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Jin, Y.; Zhang, Z.; Song, R.; Liu, M.; Li, W.; Li, X.; Wu, R.; Li, B.; Li, J.; et al. Recent Advances in Spin-Coating Precursor Mediated Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides. Precis. Chem. 2024, 2, 282–299. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Zhao, B.; Zhao, W.; Ni, Z. Liquid-Precursor-Intermediated Synthesis of Atomically Thin Transition Metal Dichalcogenides. Mater. Horiz. 2023, 10, 1105–1120. [Google Scholar] [CrossRef]
- Kang, S.K.; Lee, H.S. Study on Growth Parameters for Monolayer MoS2 Synthesized by CVD Using Solution-Based Metal Precursors. Appl. Sci. Converg. Technol. 2019, 28, 159–163. [Google Scholar] [CrossRef]
- Kim, H.; Han, G.H.; Yun, S.J.; Zhao, J.; Keum, D.H.; Jeong, H.Y.; Ly, T.H.; Jin, Y.; Park, J.-H.; Moon, B.H.; et al. Role of Alkali Metal Promoter in Enhancing Lateral Growth of Monolayer Transition Metal Dichalcogenides. Nanotechnology 2017, 28, 36LT01. [Google Scholar] [CrossRef]
- Yang, K.Y.; Nguyen, H.T.; Tsao, Y.M.; Artemkina, S.B.; Fedorov, V.E.; Huang, C.W.; Wang, H.C. Large Area MoS2 Thin Film Growth by Direct Sulfurization. Sci. Rep. 2023, 13, 8378. [Google Scholar] [CrossRef]
- An, G.H.; Yun, S.J.; Lee, Y.H.; Lee, H.S. Growth Mechanism of Alternating Defect Domains in Hexagonal WS 2 via Inhomogeneous W—Precursor Accumulation. Small 2020, 16, e2003326. [Google Scholar] [CrossRef] [PubMed]
- Seravalli, L.; Esposito, F.; Bosi, M.; Aversa, L.; Trevisi, G.; Verucchi, R.; Lazzarini, L.; Rossi, F.; Fabbri, F. Built-in Tensile Strain Dependence on the Lateral Size of Monolayer MoS2 Synthesized by Liquid Precursor Chemical Vapor Deposition Nanoscale. Nanoscale 2023, 15, 14669. [Google Scholar] [CrossRef]
- Esposito, F.; Bosi, M.; Attolini, G.; Rossi, F.; Panasci, S.E.; Fiorenza, P.; Giannazzo, F.; Fabbri, F.; Seravalli, L. Role of Density Gradients in the Growth Dynamics of 2-Dimensional MoS2 Using Liquid Phase Molybdenum Precursor in Chemical Vapor Deposition. Appl. Surf. Sci. 2023, 639, 158230. [Google Scholar] [CrossRef]
- Senkić, A.; Bajo, J.; Supina, A.; Radatović, B.; Vujičić, N. Effects of CVD Growth Parameters on Global and Local Optical Properties of MoS2 Monolayers. Mater. Chem. Phys. 2023, 296, 127185. [Google Scholar] [CrossRef]
- Kang, W.T.; Phan, T.L.; Ahn, K.J.; Lee, I.; Kim, Y.R.; Won, U.Y.; Kim, J.E.; Lee, Y.H.; Yu, W.J. Selective Pattern Growth of Atomically Thin MoSe2Films via a Surface-Mediated Liquid-Phase Promoter. ACS Appl. Mater. Interfaces 2021, 13, 18056–18064. [Google Scholar] [CrossRef]
- Tian, C.; Xiao, R.; Sui, Y.; Feng, Y.; Wang, H.; Zhao, S.; Liu, J.; Gao, X.; Wang, S.; Yu, G. The Controllable Synthesis of Bilayer V Doped WS 2 Based on Liquid Precursor Assisted CVD. Mater. Lett. 2023, 353, 135292. [Google Scholar] [CrossRef]
- Han, G.H.; Neumann, M.; Song, S.; Park, H.W.; Moon, B.H.; Lee, Y.H. Unusual Stacking Sequence of MoS2 and WS2 Vertical Heterostructures in One-Pot Chemical Vapor Deposition Growth. J. Korean Phys. Soc. 2023, 82, 57–67. [Google Scholar] [CrossRef]
- Rotunno, E.; Bosi, M.; Seravalli, L.; Salviati, G.; Fabbri, F. Influence of Organic Promoter Gradient on the MoS2 Growth Dynamics. Nanoscale Adv. 2020, 2, 2352–2362. [Google Scholar] [CrossRef]
- Seravalli, L.; Bosi, M.; Fiorenza, P.; Panasci, S.E.; Orsi, D.; Rotunno, E.; Cristofolini, L.; Rossi, F.; Giannazzo, F.; Fabbri, F. Gold Nanoparticle Assisted Synthesis of MoS2 Monolayers by Chemical Vapor Deposition. Nanoscale Adv. 2021, 3, 4826–4833. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Shim, G.W.; Seo, S.-B.; Choi, S.-Y. Effective Shape-Controlled Growth of Monolayer MoS2 Flakes by Powder-Based Chemical Vapor Deposition. Nano Res. 2017, 10, 255–262. [Google Scholar] [CrossRef]
- Pei, J.; Yang, J.; Xu, R.; Zeng, Y.H.; Myint, Y.W.; Zhang, S.; Zheng, J.C.; Qin, Q.; Wang, X.; Jiang, W.; et al. Exciton and Trion Dynamics in Bilayer MoS2. Small 2015, 11, 6384–6390. [Google Scholar] [CrossRef]
- Cadiz, F.; Tricard, S.; Gay, M.; Lagarde, D.; Wang, G.; Robert, C.; Renucci, P.; Urbaszek, B.; Marie, X. Well Separated Trion and Neutral Excitons on Superacid Treated MoS2 Monolayers. Appl. Phys. Lett. 2016, 108, 251106. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Golovynskyi, S.; Irfan, I.; Bosi, M.; Seravalli, L.; Datsenko, O.I.; Golovynska, I.; Li, B.; Lin, D.; Qu, J. Exciton and Trion in Few-Layer MoS2: Thickness- and Temperature-Dependent Photoluminescence. Appl. Surf. Sci. 2020, 515, 146033. [Google Scholar] [CrossRef]
- Amani, M.; Lien, D.H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S.R.; Addou, R.; Santosh, K.C.; Dubey, M.; et al. Near-Unity Photoluminescence Quantum Yield in MoS2. Science 2015, 350, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, B.; Yuan, J.; Filez, M.; Fu, D.; Hu, J.; Lou, J.; Scully, M.O.; Weckhuysen, B.M.; Zhang, Z. Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications. ACS Appl. Nano Mater. 2018, 1, 6226–6235. [Google Scholar] [CrossRef]
- Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 5944–5948. [Google Scholar] [CrossRef]
- Lu, A.Y.; Martins, L.G.P.; Shen, P.C.; Chen, Z.; Park, J.H.; Xue, M.; Han, J.; Mao, N.; Chiu, M.H.; Palacios, T.; et al. Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine-Learning Models. Adv. Mater. 2022, 34, e2202911. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Y.; Meng, Q.; Lu, X.; Kong, S.; Huang, Z.; Jiang, P.; Bao, X. Role of the Carrier Gas Flow Rate in Monolayer MoS2 Growth by Modified Chemical Vapor Deposition. Nano Res. 2016, 10, 643–651. [Google Scholar] [CrossRef]
- Cao, Y.; Luo, X.; Han, S.; Yuan, C.; Yang, Y.; Li, Q.; Yu, T.; Ye, S. Influences of Carrier Gas Flow Rate on the Morphologies of MoS2 Flakes. Chem. Phys. Lett. 2015, 631–632, 30–33. [Google Scholar] [CrossRef]
- Cho, Y.J.; Sim, Y.; Lee, J.H.; Hoang, N.T.; Seong, M.J. Size and Shape Control of CVD-Grown Monolayer MoS2. Curr. Appl. Phys. 2023, 45, 99–104. [Google Scholar] [CrossRef]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.W.; Chang, C.S.; Li, L.J.; et al. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; et al. Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano 2013, 7, 8963–8971. [Google Scholar] [CrossRef] [PubMed]
- Johari, M.H.; Sirat, M.S.; Mohamed, M.A.; Mustaffa, A.F.; Mohmad, A.R. Computational Fluid Dynamics Insights into Chemical Vapor Deposition of Homogeneous MoS2 Film with Solid Precursors. Cryst. Res. Technol. 2023, 58, 2300139. [Google Scholar] [CrossRef]
- Herman, M.A.; Richter, W.; Sitter, H. Epitaxy; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 62, ISBN 978-3-642-08737-0. [Google Scholar]
- Panasci, S.E.; Koos, A.; Schilirò, E.; Di Franco, S.; Greco, G.; Fiorenza, P.; Roccaforte, F.; Agnello, S.; Cannas, M.; Gelardi, F.M.; et al. Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization. Nanomaterials 2022, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wang, H.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Pondick, J.V.; Woods, J.M.; Xing, J.; Zhou, Y.; Cha, J.J. Stepwise Sulfurization from MoO3 to MoS2 via Chemical Vapor Deposition. ACS Appl. Nano Mater. 2018, 1, 5655–5661. [Google Scholar] [CrossRef]
- Withanage, S.S.; Kalita, H.; Chung, H.-S.; Roy, T.; Jung, Y.; Khondaker, S.I. Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS2 Using MoO3 Thin Film as a Precursor for Coevaporation. ACS Omega 2024, 3, 18943–18949. [Google Scholar] [CrossRef]
- Kumar, P.; Viswanath, B. Horizontally and Vertically Aligned Growth of Strained MoS2 Layers with Dissimilar Wetting and Catalytic Behaviors †. CrystEngComm 2017, 19, 5068–5078. [Google Scholar] [CrossRef]
- Kwak, T.; Lee, J.; So, B.; Choi, U.; Nam, O. Growth Behavior of Wafer-Scale Two-Dimensional MoS2 Layer Growth Using Metal-Organic Chemical Vapor Deposition. J. Cryst. Growth 2019, 510, 50–55. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y.; Li, Y.J.; Yao, J.; Zhao, Y.S. Two-Dimensional Pyramid-like WS2 Layered Structures for Highly Efficient Edge Second Harmonic Generation. ACS Nano 2018, 12, 689–696. [Google Scholar] [CrossRef]
- Negri, M.; Francaviglia, L.; Kaplan, D.; Swaminathan, V.; Salviati, G.; Fontcuberta I Morral, A.; Fabbri, F. Excitonic Absorption and Defect-Related Emission in Three-Dimensional MoS2 Pyramids †. Nanoscale 2022, 14, 1179–1186. [Google Scholar] [CrossRef]
- Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J.H. Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chem. Mater. 2014, 26, 6371–6379. [Google Scholar] [CrossRef]
- Zhu, Z.; You, J.; Zhu, D.; Jiang, G.; Zhan, S.; Wen, J.; Xia, Q. Effect of Precursor Ratio on the Morphological and Optical Properties of CVD-Grown Monolayer MoS2 Nanosheets. Mater. Res. Express 2021, 8, 045008. [Google Scholar] [CrossRef]
- Wang, S.; Pacios, M.; Bhaskaran, H.; Warner, J.H. Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology 2016, 27, 085604. [Google Scholar]
- Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J. Wafer-Scale MoS2 Thin Layers Prepared by MoO3 Sulfurization. Nanoscale 2012, 4, 6637–6641. [Google Scholar] [CrossRef]
Flake Size (µm) | Mo Precursor | Temperature | Substrate | No. of Layers | Applications | Ref. |
---|---|---|---|---|---|---|
continuous | MoO3 thin film | 1000 °C | c-sapphire | Trilayers | Electronics (FET) | [65] |
10–50 | MoO3 powders | 750 °C | SiO2/Si | Mono and Bilayers | Photonics | [34] |
10–100 | MoO3 powders | 700–720 °C | SiO2/Si | Monolayers | n.a. | [36] |
10–20 | Liquid | 850 °C | c-sapphire | Monolayers | Electronics (FET) | [17] |
100–250 | Liquid | 725 °C | SiO2/Si | Mono and Bilayers | Electronics (FET) | [19] |
100–200 | Liquid | 820 °C | SiO2/Si | Monolayers | n.a. | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, F.; Bosi, M.; Attolini, G.; Rossi, F.; Fornari, R.; Fabbri, F.; Seravalli, L. Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors. Nanomaterials 2024, 14, 1749. https://doi.org/10.3390/nano14211749
Esposito F, Bosi M, Attolini G, Rossi F, Fornari R, Fabbri F, Seravalli L. Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors. Nanomaterials. 2024; 14(21):1749. https://doi.org/10.3390/nano14211749
Chicago/Turabian StyleEsposito, Fiorenza, Matteo Bosi, Giovanni Attolini, Francesca Rossi, Roberto Fornari, Filippo Fabbri, and Luca Seravalli. 2024. "Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors" Nanomaterials 14, no. 21: 1749. https://doi.org/10.3390/nano14211749
APA StyleEsposito, F., Bosi, M., Attolini, G., Rossi, F., Fornari, R., Fabbri, F., & Seravalli, L. (2024). Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors. Nanomaterials, 14(21), 1749. https://doi.org/10.3390/nano14211749