Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. System Stability
3.2. Electrical Properties
3.3. Optical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mirov, S.B.; Fedorov, V.V.; Martyshkin, D.; Moskalev, I.S.; Mirov, M.; Vasilyev, S. Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 292–310. [Google Scholar] [CrossRef]
- Gafarov, O.; Watkins, R.; Fedorov, V.; Mirov, S. Middle Infrared Electroluminescence of Cr2+ ions in n-type Al: Cr: ZnSe crystal. In Advanced Solid State Lasers; Optical Society of America: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Martyshkin, D.V.; Fedorov, V.; Kim, C.; Moskalev, I.S.; Mirov, S.B. Mid-IR random lasing of Cr-doped ZnS nanocrystals. J. Opt. 2010, 12, 024005. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, C.; Ma, E.; Lu, Z.; Wang, F.; Song, Y.; Sun, Q.; Jie, W.; Wang, T. The optical spectra characterization of Cr2+:ZnSe polycrystalline synthesized by direct reaction of Zn–Cr alloy and element Se. Ceram. Int. 2020, 46, 21136–21140. [Google Scholar] [CrossRef]
- Sorokina, I.T. Cr2+-doped II–VI materials for lasers and nonlinear optics. Opt. Mater. 2004, 26, 395–412. [Google Scholar] [CrossRef]
- Sorokina, I.T.; Sorokin, E. Femtosecond Cr2+-Based Lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 273–291. [Google Scholar] [CrossRef]
- Sennaroglu, A.; Konca, A.O.; Pollock, C.R. Continuous-wave power performance of a 2.47-/spl mu/m Cr/sup 2+: ZnSe laser: Experiment and modeling. IEEE J. Quantum Electron. 2000, 36, 1199–1205. [Google Scholar] [CrossRef]
- DeLoach, L.; Page, R.; Wilke, G.; Payne, S.; Krupke, W. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quantum Electron. 1996, 32, 885–895. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Beecher, S.J.; Lancaster, A.; Berry, P.A.; Schepler, K.L.; Mirov, S.B.; Kar, A.K. Compact Cr: ZnS channel waveguide laser operating at 2333 nm. Opt. Express 2014, 22, 7052–7057. [Google Scholar] [CrossRef]
- Schepler, K.L.; Peterson, R.D.; Berry, P.A.; McKay, J.B. Thermal effects in Cr/sup 2+: ZnSe thin disk lasers. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 713–720. [Google Scholar] [CrossRef]
- Sorokina, I.T.; Dvoyrin, V.V.; Tolstik, N.; Sorokin, E. Mid-IR ultrashort pulsed fiber-based lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 99–110. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, R.; Zhang, Y.; Zhang, S.; Ren, J.; Strizik, L.; Wagner, T.; Farrell, G.; Wang, P. Crystal-field engineering of ultrabroadband mid-infrared emission in Co2+-doped nano-chalcogenide glass composites. J. Eur. Ceram. Soc. 2020, 40, 103–107. [Google Scholar] [CrossRef]
- Myoung, N.; Park, J.S.; Martinez, A.; Peppers, J.; Yim, S.Y.; Han, W.S.; Fedorov, V.V.; Mirov, S.B. Mid-IR spectroscopy of Fe: ZnSe quantum dots. Opt. Express 2016, 24, 5366–5375. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Su, W.-S.; Wu, B.-R. Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study. Nanomaterials 2022, 12, 3898. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Ghasemi, M.; Sivakumar, S.; Mergenthaler, K.; Persson, A.R.; Metaferia, W.; Magnusson, M.H. Calculation of Hole Concentrations in Zn Doped GaAs Nanowires. Nanomaterials 2020, 10, 2524. [Google Scholar] [CrossRef]
- Hou, W.; Mi, H.; Peng, R.; Peng, S.; Zeng, W.; Zhou, Q. First-Principle Insight into Ga-Doped MoS(2) for Sensing SO(2), SOF(2) and SO(2)F(2). Nanomaterials 2021, 11, 314. [Google Scholar] [CrossRef]
- Kennedy, T.A.; Glaser, E.R.; Klein, P.B.; Bhargava, R.N. Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals. Phys. Rev. B 1995, 52, R14356–R14359. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72, 416–419. [Google Scholar] [CrossRef]
- Bryan, J.D.; Gamelin, D.R. Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications. Prog. Inorg. Chem. 2005, 54, 47–126. [Google Scholar] [CrossRef]
- Radovanovic, P.V.; Gamelin, D.R. Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots: Demonstration of an Isocrystalline Core/Shell Synthetic Method. J. Am. Chem. Soc. 2001, 123, 12207–12214. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.; Meyer, B.; Ekimov, A.; Merkulov, I.; Efros, A.; Rosen, M.; Couino, G.; Gacoin, T.; Boilot, J. Giant internal magnetic fields in Mn doped nanocrystal quantum dots. Solid State Commun. 2000, 114, 547–550. [Google Scholar] [CrossRef]
- Norris, D.J.; Yao, N.; Charnock, F.T.; Kennedy, T.A. High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Lett. 2001, 1, 3–7. [Google Scholar] [CrossRef]
- Chen, H.; Shi, D.; Qi, J.; Jia, J.; Wang, B. The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires. Phys. Lett. A 2009, 373, 371–375. [Google Scholar] [CrossRef]
- Kresse, G. Software VASP.; VASP Software GmbH: Vienna, Austria, 1999. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Validžić, I.L.; Mitrić, M.; Abazović, N.D.; Jokić, B.M.; Milošević, A.S.; Popović, Z.S.; Vukajlović, F.R. Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. Semicond. Sci. Technol. 2014, 29, 035007. [Google Scholar] [CrossRef]
- Pi, X.; Chen, X.; Yang, D. First-Principles Study of 2.2 nm Silicon Nanocrystals Doped with Boron. J. Phys. Chem. C 2011, 115, 9838–9843. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, G.; Dai, S.; Ning, S.; Zhou, S. First-principles analysis of the absorption and luminescence properties of Cr2+ -doped ZnSe crystal. Curr. Appl. Phys. 2016, 16, 501–505. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, X.; Liu, S.; Li, B.; Huang, L.; Cui, Y.; Li, J.; Wei, Z. High-performance photodetectors based on Sb2S3 nanowires: Wavelength dependence and wide tem-perature range utilization. Nanoscale 2017, 9, 12364–12371. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, G.; Dai, S.; Ning, S.; Zhou, S. First-principles study of the electronic structures and optical properties of Cr2+-doped ZnSe as a function of impurity concentration. Phys. Status Solidi 2016, 253, 1133–1137. [Google Scholar] [CrossRef]
- Gajdos, M.; Hummer, K.; Kresse, J.G. Furthm üller, and F. Bechstedt. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, C.; Feng, G. Doping non-uniformity influence on the electrical and optical properties of chromium doped zinc selenide. Mater. Today Commun. 2021, 26, 101946. [Google Scholar] [CrossRef]
- Feng, G.; Yang, C.; Zhou, S. Nanocrystalline Cr2+-doped ZnSe Nanowires Laser. Nano Lett. 2012, 13, 272–275. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, Y.; Yao, H.; Wang, H.; Feng, G. A study of the electrical and optical properties of Cr2+: ZnSe nano-sheets by first-principle calculations. Mater. Today Commun. 2022, 33, 104790. [Google Scholar] [CrossRef]
- Peng, Y.; Xia, C.; Tan, Z.; An, J.; Zhang, Q. Size-controlled excitonic effects on electronic and optical properties of Sb2S3 nanowires. Phys. Chem. Chem. Phys. 2019, 21, 26515–26524. [Google Scholar] [CrossRef]
Models | Total Energy (eV) | Defect Formation Energy (eV) |
---|---|---|
NW-1(Zn8Se8) | −87.412 | / |
NW-1(site 1) | −92.257 | 2.265 |
NW-1(site 2) | −93.066 | 1.456 |
NW-2(Zn18Se18) | −168.793 | / |
NW-2(site 1) | −174.461 | 1.442 |
NW-2(site 2) | −174.230 | 1.673 |
NW-2(site 3) | −174.905 | 0.998 |
NW-3(Zn32Se32) | −272.860 | / |
NW-3(site 1) | −278.982 | 0.988 |
NW-3(site 2) | −279.691 | 0.279 |
NW-3(site 3) | −279.938 | 0.030 |
NW-3(site 4) | −279.572 | 0.398 |
Models | Size (Å) | Bandgap (eV) | de Broglie Wavelength (nm) | |||
---|---|---|---|---|---|---|
NW-1 (site 2) | 8.5 | 3.42 | 0.34 | −0.14 | 13 | 20 |
NW-2 (site 3) | 14.2 | 2.67 | 1.17 | −0.16 | 7 | 19 |
NW-3 (site 3) | 19.8 | 2.39 | 1.19 | 0.13 | 7 | 21 |
bulk [30] | / | 2.14 | 0.03 | −0.69 | 44 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; He, S.; Yao, H.; Zuo, H.; Liu, S.; Yang, C.; Feng, G. Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires. Nanomaterials 2023, 13, 369. https://doi.org/10.3390/nano13020369
Zhang Y, He S, Yao H, Zuo H, Liu S, Yang C, Feng G. Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires. Nanomaterials. 2023; 13(2):369. https://doi.org/10.3390/nano13020369
Chicago/Turabian StyleZhang, Yuqin, Shi He, Honghong Yao, Hao Zuo, Shuang Liu, Chao Yang, and Guoying Feng. 2023. "Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires" Nanomaterials 13, no. 2: 369. https://doi.org/10.3390/nano13020369
APA StyleZhang, Y., He, S., Yao, H., Zuo, H., Liu, S., Yang, C., & Feng, G. (2023). Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires. Nanomaterials, 13(2), 369. https://doi.org/10.3390/nano13020369