A Solar-Driven Oil–Water Separator with Fluorescence Sensing Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Delignified Wood Blocks
2.3. Fabrication of DLW Modified by SiO2 Nanospheres
2.4. Fabrication of Carbon Quantum Dots (CDs)
2.5. Fabrication of v-TPDLW@CDs@PVA Evaporator
2.6. Preparation of Oil-in-Water Emulsion
2.7. Analysis of Water Evaporation Performance
2.8. Characterization
3. Results and Discussion
3.1. Fabrication Process and Morphological Characterization
3.2. Verification of the Advantages of Evaporator Design
3.3. Oil–Water Separation Performance
3.4. Fluorescence Sensing of Fe3+
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, Y.; Fan, T.; Cui, W.; Li, Y.; Ramakrishna, S.; Long, Y. Advanced Electrospun Nanofibrous Materials for Efficient Oil/Water Separation. Adv. Fiber Mater. 2022, 4, 938–958. [Google Scholar] [CrossRef]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Kurniawan, T.A.; Li, T.; Dzinun, H.; Imtiaz, A. Treatment of Oily Wastewater Using Photocatalytic Membrane Reactors: A Critical Review. J. Environ. Chem. Eng. 2022, 10, 108539. [Google Scholar] [CrossRef]
- Wei, Y.; Qi, H.; Gong, X.; Zhao, S. Specially Wettable Membranes for Oil–Water Separation. Adv. Mater. Interfaces 2018, 5, 1800576. [Google Scholar] [CrossRef]
- Detloff, T.; Lerche, D. Centrifugal Separation in Tube and Disc Geometries: Experiments and Theoretical Models. Acta Mech. 2008, 201, 83–94. [Google Scholar] [CrossRef]
- Ma, J.; Yao, M.; Yang, Y.; Zhang, X. Comprehensive Review on Stability and Demulsification of Unconventional Heavy Oil-Water Emulsions. J. Mol. Liq. 2022, 350, 118510. [Google Scholar] [CrossRef]
- Chen, N.; Chen, S.; Yin, H.; Zhu, B.; Liu, M.; Yang, Y.; Zhang, Z.; Wei, G. Durable Underwater Super-Oleophobic/Super-Hydrophilic Conductive Polymer Membrane for Oil-Water Separation. Water Res. 2023, 243, 120333. [Google Scholar] [CrossRef]
- Wang, D.; Gao, Y.; Gao, S.; Huang, H.; Min, F.; Li, Y.; Seeger, S.; Jin, J.; Chu, Z. Antifouling Superhydrophilic Porous Glass Membrane Based on Sulfobetaine Prepared by Thiol−ene Click Chemistry for High-Efficiency Oil/Water Separation. J. Membr. Sci. 2023, 670, 121336. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Q.; Zhang, M.; Deng, Q.; Chen, D. Facile Fabrication of Raspberry-like Composite Microspheres for the Construction of Superhydrophobic Films and Applications in Highly Efficient Oil–Water Separation. RSC Adv. 2017, 7, 39471–39479. [Google Scholar] [CrossRef]
- Zhou, W.; Min, F.; Shi, J.; Wang, D.; Huang, H.; Liu, H.; Chu, Z. High Temperature Oil–Water Separation Based on Superwettable Membranes for Removing Water from Condensation Reactions. J. Mater. Chem. A 2023, 11, 13231–13237. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, J.; Si, Y.; Zhang, F.; Yu, J.; Liu, L.; Ding, B. Taro Leaf-Inspired and Superwettable Nanonet-Covered Nanofibrous Membranes for High-Efficiency Oil Purification. Nanoscale Horiz. 2019, 4, 1174–1184. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, T.C.; Wei, B.; Chen, S.; Liang, Y.; Yuan, S. Durable CNTs Reinforced Porous Electrospun Superhydrophobic Membrane for Efficient Gravity Driven Oil/Water Separation. Colloids Surf. A 2021, 608, 125342. [Google Scholar] [CrossRef]
- Liu, N.; Yang, Z.; Sun, Y.; Shan, L.; Li, H.; Wang, Z. Slippery Mechanism for Enhancing Separation and Anti-Fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface. Langmuir 2022, 38, 8312–8323. [Google Scholar] [CrossRef]
- Sun, N.; Zhu, Z.; Zeng, G. Bioinspired Superwetting Fibrous Skin with Hierarchical Roughness for Efficient Oily Water Separation. Sci. Total Environ. 2020, 744, 140822. [Google Scholar]
- Singh, S.; Shauloff, N.; Jelinek, R. Solar-Enabled Water Remediation via Recyclable Carbon Dot/Hydrogel Composites. ACS Sustain. Chem. Eng. 2019, 7, 13186–13194. [Google Scholar] [CrossRef]
- Sohn, B.; Song, M.; Choi, J.; Jeon, S. Wood Scrolls as Highly Efficient All-Day Steam Generators. Adv. Sustain. Syst. 2022, 6, 2200259. [Google Scholar] [CrossRef]
- Gan, W.; Chen, C.; Wang, Z.; Song, J.; Kuang, Y.; He, S.; Mi, R.; Sunderland, P.B.; Hu, L. Dense, Self-Formed Char Layer Enables a Fire-Retardant Wood Structural Material. Adv. Funct. Mater. 2019, 29, 1807444. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Yang, F.; Tang, C.; Huang, Q. Effect of H2O2 Bleaching Treatment on the Properties of Finished Transparent Wood. Polymers 2019, 11, 776. [Google Scholar] [CrossRef]
- He, S.; Chen, C.; Li, T.; Song, J.; Zhao, X.; Kuang, Y.; Liu, Y.; Pei, Y.; Hitz, E.; Kong, W.; et al. An Energy-Efficient, Wood-Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. Small Methods 2020, 4, 1900747. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, S.; He, F.; Cao, M.; Peng, S.; Li, Y. One-Step Transformation of Highly Hydrophobic Membranes into Superhydrophilic and Underwater Superoleophobic Ones for High-Efficiency Separation of Oil-in-Water Emulsions. J. Mater. Chem. A 2018, 6, 3391–3396. [Google Scholar] [CrossRef]
- Wang, K.; Tan, L.; Zhang, Y.; Zhang, D.; Wang, N.; Wang, J. A Molecular Imprinted Fluorescence Sensor Based on Carbon Quantum Dots for Selective Detection of 4-Nitrophenol in Aqueous Environments. Mar. Pollut. Bull. 2023, 187, 114587. [Google Scholar] [CrossRef] [PubMed]
- Nammahachak, N.; Aup-Ngoen, K.K.; Asanithi, P.; Horpratum, M.; Chuangchote, S.; Ratanaphan, S.; Surareungchai, W. Hydrothermal Synthesis of Carbon Quantum Dots with Size Tunability via Heterogeneous Nucleation. RSC Adv. 2022, 12, 31729–31733. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhu, Q.; Feng, L.; Li, X.; Zhu, H.; Miao, H.; Zeng, Z.; Wang, Y.; Li, Y.; Wang, L.; et al. Light-Trapping SERS Substrate with Regular Bioinspired Arrays for Detecting Trace Dyes. ACS Appl. Mater. Interfaces 2021, 13, 11535–11542. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Li, Y.; Wang, L.; Wang, H.; Yang, J.; Miao, H.; Shi, G. Non-Uniform Deposition of N-CoP3Films on Silicon-Based Photoelectrodes for Efficient Water Splitting. ACS Appl. Energy Mater. 2022, 5, 12622–12629. [Google Scholar] [CrossRef]
- Hu, X.; Huang, J.; Zhao, F.; Yi, P.; He, B.; Wang, Y.; Chen, T.; Chen, Y.; Li, Z.; Liu, X. Photothermal Effect of Carbon Quantum Dots Enhanced Photoelectrochemical Water Splitting of Hematite Photoanodes. J. Mater. Chem. A 2020, 8, 14915–14920. [Google Scholar] [CrossRef]
- Bao, Y.-W.; Hua, X.-W.; Li, Y.-H.; Jia, H.-R.; Wu, F.-G. Hyperthemia-Promoted Cytosolic and Nuclear Delivery of Copper/Carbon Quantum Dot-Crosslinked Nanosheets: Multimodal Imaging-Guided Photothermal Cancer Therapy. ACS Appl. Mater. Interfaces 2018, 10, 1544–1555. [Google Scholar] [CrossRef]
- Yoo, D.; Park, Y.; Cheon, B.; Park, M.-H. Carbon Dots as an Effective Fluorescent Sensing Platform for Metal Ion Detection. Nanoscale Res. Lett. 2019, 14, 272. [Google Scholar] [CrossRef]
- Lagos, K.J.; Buzzá, H.H.; Bagnato, V.S.; Romero, M.P. Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. Int. J. Mol. Sci 2021, 23, 22. [Google Scholar] [CrossRef]
- Gao, X.; Du, C.; Zhuang, Z.; Chen, W. Carbon Quantum Dot-Based Nanoprobes for Metal Ion Detection. J. Mater. Chem. C 2016, 4, 6927–6945. [Google Scholar] [CrossRef]
- Li, Y.-R.; Jin, X.; Li, W.; Niu, J.-R.; Han, X.; Yang, X.-F.; Wang, W.-Y.; Lin, T.; Zhu, Z.-T. Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation. Sci. China Mater. 2022, 65, 1057–1067. [Google Scholar] [CrossRef]
- Chen, T.-H.; Tseng, W.-L. Self-Assembly of Monodisperse Carbon Dots into High-Brightness Nanoaggregates for Cellular Uptake Imaging and Iron(III) Sensing. Anal. Chem. 2017, 89, 11348–11356. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Liu, Y.; Shu, Q.-W.; Liang, J.-M.; Zhang, F.; Chen, X.-P.; Deng, X.-Y.; Swihart, M.T.; Tan, K.-J. One-Pot Hydrothermal Synthesis of Carbon Dots with Efficient Up- and Down-Converted Photoluminescence for the Sensitive Detection of Morin in a Dual-Readout Assay. Langmuir 2017, 33, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, S.; Falinski, M.M.; Wang, Y.; Li, T.; Zheng, S.; Sun, D.; Dai, J.; Bian, Y.; Zhu, X.; et al. Sustainable Off-Grid Desalination of Hypersaline Waters Using Janus Wood Evaporators. Energy Environ. Sci. 2021, 14, 5347–5357. [Google Scholar] [CrossRef]
- Meng, T.; Li, Z.; Wan, Z.; Zhang, J.; Wang, L.; Shi, K.; Bu, X.; Alshehri, S.M.; Bando, Y.; Yamauchi, Y.; et al. MOF-Derived Nanoarchitectured Carbons in Wood Sponge Enable Solar-Driven Pumping for High-Efficiency Soil Water Extraction. Chem. Eng. J. 2023, 452, 139193. [Google Scholar] [CrossRef]
- Imsong, R.; Dhar Purkayastha, D. Dual-Functional Superhydrophilic/Underwater Superoleophobic 2D Ti3C2TX MXene-PAN Membrane for Efficient Oil-Water Separation and Adsorption of Organic Dyes in Wastewater. Sep. Purif. Technol. 2023, 306, 122636. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lin, W.; Petrescu, F.I.T.; Li, J.; Wang, L.; Zhu, H.; Wang, H.; Shi, G. A Solar-Driven Oil–Water Separator with Fluorescence Sensing Performance. Nanomaterials 2023, 13, 2696. https://doi.org/10.3390/nano13192696
Li X, Lin W, Petrescu FIT, Li J, Wang L, Zhu H, Wang H, Shi G. A Solar-Driven Oil–Water Separator with Fluorescence Sensing Performance. Nanomaterials. 2023; 13(19):2696. https://doi.org/10.3390/nano13192696
Chicago/Turabian StyleLi, Xin, Wei Lin, Florian Ion Tiberiu Petrescu, Jia Li, Likui Wang, Haiyan Zhu, Haijun Wang, and Gang Shi. 2023. "A Solar-Driven Oil–Water Separator with Fluorescence Sensing Performance" Nanomaterials 13, no. 19: 2696. https://doi.org/10.3390/nano13192696
APA StyleLi, X., Lin, W., Petrescu, F. I. T., Li, J., Wang, L., Zhu, H., Wang, H., & Shi, G. (2023). A Solar-Driven Oil–Water Separator with Fluorescence Sensing Performance. Nanomaterials, 13(19), 2696. https://doi.org/10.3390/nano13192696