Advanced Algorithm for Reliable Quantification of the Geometry and Printability of Printed Patterns
Abstract
1. Introduction
2. Methods
2.1. Measurement Method for Rectangle Pattern
2.2. Measurement Method for Circle Pattern
3. Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwon, Y.T.; Yune, S.-J.; Song, Y.; Yeo, W.-H.; Choa, Y.-H. Green Manufacturing of Highly Conductive Cu2O and Cu Nanoparticles for Photonic-Sintered Printed Electronics. ACS Appl. Electron. Mater. 2019, 1, 2069–2075. [Google Scholar] [CrossRef]
- Shrestha, S.; Parajuli, S.; Park, J.; Yang, H.; Cho, T.-Y.; Eom, J.-H.; Cho, G.; Jung, Y. Improving Stability of Roll-to-Roll (R2R) Gravure-Printed Carbon Nanotube-Based Thin Film Transistors via R2R Plasma-Enhanced Chemical Vapor-Deposited Silicon Nitride. Nanomaterials 2023, 13, 559. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Shin, K.; Jung, H. Control scheme for rapidly responding register controller using response acceleration input in industrial roll-to-roll manufacturing systems. IEEE Trans. Ind. Elect. 2022, 69, 5214–5224. [Google Scholar] [CrossRef]
- Jung, Y.; Park, J.; Sun, J.; Park, H.; Parajuli, S.; Shrestha, S.; Shrestha, K.; Majima, Y.; Cho, G. Roll-to-Roll Gravure-Printed Carbon Nanotube-based Transistor Arrays for a Digital Column Chromatograph. Adv. Mater. Tech. 2022, 7, 2270026. [Google Scholar] [CrossRef]
- Kim, C.; Jeon, S.W.; Kim, C.H. Reduction of Linearly Varying Term of Register Errors Using a Dancer System in Roll-to-Roll Printing Equipment for Printed Electronics. Int. J. Precis. Eng. Manuf. 2019, 20, 1485–1493. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Liao, W.-H.; Wu, T.-J.; Yasuda, K.; Song, J.-M. Cu-Ag Nanocomposite Pastes for Low Temperature Bonding and Flexible Interlayer-Interconnections. Nanomaterials 2022, 12, 4241. [Google Scholar] [CrossRef]
- Alsaid, D.A.; Reborosova, E.; Joyce, M.; Rebros, M.; Atashbar, M.; Bazuin, B. Gravure Printing of ITO Transparent Electrodes for Applications in Flexible Electronics. J. Disp. Technol. 2012, 8, 391–396. [Google Scholar] [CrossRef]
- Calvi, S.; Maita, F.; Rapisarda, M.; Fortunato, G.; Valletta, A.; Preziosi, V.; Cassinese, A.; Mariucci, L. Gravure printed organic thin film transistors: Study on the ink printability improvement. Org. Elect. 2018, 61, 104–112. [Google Scholar] [CrossRef]
- Griffith, M.K.; Cooling, N.A.; Elkington, D.C.; Wasson, M.; Zhou, X.; Belcher, W.J.; Dastoor, P.C. Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications. Nanomaterials 2021, 11, 1185. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, L.; Zhang, Z.; Liu, Y.; Li, Z. Fully-printed, paper-based electrochromic devices combined with wireless driving. Electrochim. Acta 2023, 440, 141748. [Google Scholar] [CrossRef]
- Kapur, N. A parametric study of direct gravure coating. Chem. Eng. Sci. 2003, 58, 2875–2882. [Google Scholar] [CrossRef]
- Kitsomboonloha, R.; Morris, S.J.S.; Rong, X.; Subramanian, V. Femtoliter-Scale Patterning by High-Speed, Highly Scaled Inverse Gravure Printing. Langmuir 2012, 28, 16711–16723. [Google Scholar] [CrossRef] [PubMed]
- Cen, J.; Kitsomboonloha, R.; Subramanian, V. Cell Filling in Gravure Printing for Printed Electronics. Langmuir 2014, 30, 13716–13726. [Google Scholar] [CrossRef] [PubMed]
- Kitsomboonloha, R.; Subramanian, V. Lubrication-Related Residue as a Fundamental Process Scaling Limit to Gravure Printed Electronics. Langmuir 2014, 30, 3612–3624. [Google Scholar] [CrossRef]
- Raske, N.; Hewson, R.W.; Kapur, N.; de Boer, G.N. A predictive model for discrete cell gravure roll coating. Phys. Fluid 2017, 29, 062101. [Google Scholar] [CrossRef]
- Nguyen, H.A.D.; Lee, C.; Shin, K.-H.; Lee, D. An Investigation of the Ink-Transfer Mechanism During the Printing Phase of High-Resolution Roll-to-Roll Gravure Printing. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 1516–1524. [Google Scholar] [CrossRef]
- Nguyen, H.A.D.; Lee, J.; Kim, C.H.; Shin, K.-H.; Lee, D. An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. J. Micromech. Microeng. 2013, 23, 095010. [Google Scholar] [CrossRef]
- Hyun, W.J.; Lim, S.; Ahn, B.Y.; Lewis, J.A.; Frisbie, C.D.; Francis, L.F. Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils. ACS Appl. Mater. Inter. 2015, 7, 12619–12624. [Google Scholar] [CrossRef]
- Park, J.; Nguyen, H.A.D.; Park, S.; Lee, J.; Kim, B.; Lee, D. Roll-to-roll gravure printed silver patterns to guarantee printability and functionality for mass production. Curr. Appl. Phys. 2015, 15, 367–376. [Google Scholar] [CrossRef]
- Noh, J.; Yeom, D.; Lim, C.; Cha, H.; Han, J.; Kim, J.; Park, Y.; Subramanian, V.; Cho, G. Scalability of Roll-to-Roll Gravure-Printed Electrodes on Plastic Foils. IEEE Trans. Compon. Packag. Manuf. 2010, 33, 275–283. [Google Scholar] [CrossRef]
- Park, H.; Sun, J.; Jung, Y.; Park, J.; Maskey, B.B.; Shrestha, K.; Koirala, G.R.; Parajuli, S.; Shrestha, S.; Chung, A.; et al. The First Step towards a R2R Printing Foundry via a Complementary Design Rule in Physical Dimension for Fabricating Flexible 4-Bit Code Generator. Adv. Elect. Mater. 2020, 6, 2000770. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Jeong, H.; Shin, K.H.; Lee, D. Optimization of printing conditions for microscale multiline printing in continuous roll-to-roll gravure printing. J. Ind. Eng. Chem. 2016, 42, 131–141. [Google Scholar] [CrossRef]
- Lee, J.; Isto, P.; Jeong, H.; Park, J.; Lee, D.; Shin, K.H. Register mark measurement errors in high-precision roll-to-roll continuous systems: The effect of register mark geometry on measurement error. Appl. Phys. Lett. 2016, 109, 141602. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Shin, K.-H.; Jung, H. Smearing defects: A root cause of register measurement error in roll-to-roll additive manufacturing system. Int. J. Adv. Manuf. Tech. 2018, 98, 3155–3165. [Google Scholar] [CrossRef]
- Nam, K.S.; Yoon, S.M.; Lee, S.-H.; Kim, D.S.; Kim, C.H. Effect of Properties of Conductive Ink on Printability of Electrode Patterning by Gravure Printing Method. J. Korean Soc. Precis. Eng. 2013, 30, 573–577. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, C.; Kim, C.H. Optimization of Printing Conditions Using Design Experiments for Minimization of Resistances of Electrodes in Roll-to-roll Gravure Printing Process. J. Korean Soc. Manuf. Technol. Eng. 2017, 26, 351–356. [Google Scholar]
- Jeon, S.W.; Kim, C.; Kim, C.H. Assessment of printability for printed electronics patterns by measuring geometric dimensions and defining assessment parameters. J. Mech. Sci. Tech. 2016, 31, 5625–5631. [Google Scholar] [CrossRef]
- Lee, M.; Parajuli, S.; Moon, H.; Song, R.; Lee, S.; Shrestha, S.; Park, J.; Yang, H.; Jung, Y.; Cho, G.; et al. Characterization of silver nanoparticle inks toward stable roll-to-roll gravure printing. Flex. Print. Electron. 2022, 7, 014003. [Google Scholar] [CrossRef]
- Available online: https://www.iec.ch/dyn/www/f?p=103:14:114555430244583::::FSP_ORG_ID,FSP_LANG_ID:10356,25 (accessed on 13 April 2023).
- Available online: https://www.iec.ch/dyn/www/f?p=103:22:114555430244583::::FSP_ORG_ID,FSP_LANG_ID:8679,25 (accessed on 13 April 2023).
- Chen, L.; Yang, C.; Xiao, Y.; Yan, X.; Hu, L.; Eggersdorfer, M.; Chen, D.; Weitz, D.A.; Ye, F. Millifluidics, microfluidics, and nanofluidics: Manipulating fluids at varying length scales. Mater. Today Nano 2021, 16, 100136. [Google Scholar] [CrossRef]
- Yang, C.; Wu, B.; Ruan, J.; Zhao, P.; Chen, L.; Chen, D.; Ye, F. 3D-Printed Biomimetic Systems with Synergetic Color and Shape Responses Based on Oblate Cholesteric Liquid Crystal Droplets. Adv. Mater. 2021, 33, 2006361. [Google Scholar] [CrossRef]
Conditions | Value | |
---|---|---|
Ink property | Surface tension of ink | 37 mN/m |
Ink viscosity | 50 mN/m | |
Average particle size | 150 nm | |
Web property | Surface energy | 10,000 cP |
Printing conditions | Printing speed | 5 m/min |
Tension | 30 N | |
Nip pressure | 0.5 MPa | |
Doctor pressure | 0.5 MPa |
Author | Pattern | Parameter for Printing Quality | Number of Measurement Data per Unit Sample | Ref. |
---|---|---|---|---|
Kapur, N | Strip (coating) | Fractional pickout | - | [11] |
Kitsomboonloha, R. et al. | Line (printing) | Printed volume fraction (Avg. 1, Min. 2, Max. 3) | 6 | [12] |
Nguyen, H.A.D. et al. | Line (printing) | Ink transfer ratio (ITRA) | - | [16] |
Pattern width (Avg., Min., Max.) | [16,17] | |||
Hyun, W.J. et al. | Line (printing) | Pattern width (Avg., Min., Max.) | - | [18] |
J. Park et al. | Line (printing) | Pattern width (Avg., Min., Max.) | 18 | [19] |
Widening ratio | ||||
J. Noh et al. | Line (printing) | Pattern width (Avg.) | - | [20] |
Edge waviness (Avg.) | ||||
J. Lee et al. | Line (printing) | Pattern width (Avg.) | 9 | [22] |
Local smudging (Avg.) | ||||
Continuity (Avg.) | ||||
Nam, K.S. et al. | Line (printing) | Aspect ratio Pattern width (Avg., Min., Max.) | - | [25] |
Lee, S.Y. et al. | Line (printing) | Edge waviness (Avg.) | 6 | [26] |
Jeon, S.W. et al. | Line and mesh (printing) | Pattern width (Avg., Max.) Edge waviness (Avg., Max.) | 30 | [27] |
Lee, M. et al. | T-shape (printing) | Pattern width (Avg., Min., Max.) | - | [28] |
This work | Shapes (printing) | Pattern width, height and radius (Avg. and SD. 4) | Avg. 1662 5 (Figure 6 and Figure 7) | - |
Widening ratio | ||||
Edge waviness (Avg. and SD) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, C.H. Advanced Algorithm for Reliable Quantification of the Geometry and Printability of Printed Patterns. Nanomaterials 2023, 13, 1597. https://doi.org/10.3390/nano13101597
Lee J, Kim CH. Advanced Algorithm for Reliable Quantification of the Geometry and Printability of Printed Patterns. Nanomaterials. 2023; 13(10):1597. https://doi.org/10.3390/nano13101597
Chicago/Turabian StyleLee, Jongsu, and Chung Hwan Kim. 2023. "Advanced Algorithm for Reliable Quantification of the Geometry and Printability of Printed Patterns" Nanomaterials 13, no. 10: 1597. https://doi.org/10.3390/nano13101597
APA StyleLee, J., & Kim, C. H. (2023). Advanced Algorithm for Reliable Quantification of the Geometry and Printability of Printed Patterns. Nanomaterials, 13(10), 1597. https://doi.org/10.3390/nano13101597