Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting
Abstract
:1. Introduction
2. Experimental Section
2.1. Fabrication of the CS-TENG
2.2. Measurement
3. Results and Discussion
3.1. Structural Design and Working Principle of the CS-TENG
3.2. Structural Optimization of the CS-TENG
3.3. Performance of the CS-TENG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hook, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Asif, M.; Muneer, T. Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 2007, 11, 1388–1413. [Google Scholar] [CrossRef]
- Painuly, J.P. Barriers to renewable energy penetration; a framework for analysis. Renew. Energy 2001, 24, 73–89. [Google Scholar] [CrossRef]
- Wang, K.; Weng, Y.L.; Chen, G.X.; Wu, C.X.; Park, J.H.; Qiu, Z.R.; Wang, J.X.; Liu, Y.; Zhang, Y.A.; Zhou, X.T.; et al. Coupling electrostatic induction and global electron circulation for constant-current triboelectric nanogenerators. Nano Energy 2021, 85, 105929. [Google Scholar] [CrossRef]
- Wang, Q.M.; Li, W.H.; Guo, J.W.; Wang, K.; Wu, C.X. Research progress of triboelectric nanogenerator for wind energy harvesting. Electron. Compon. Mater. 2020, 41, 111. [Google Scholar]
- Liao, Y.T.; Li, W.H.; Wang, K.; Guo, J.W.; Shen, Y.W.; Wang, Q.M.; Zhang, Y.A.; Wu, C.X.; Zhou, X.T.; Guo, T.L.; et al. TENG-inspired LED-in-capacitors for smart self-powered high-voltage monitoring and high-sensitivity demodulation of power-line communications. Nano Energy 2022, 102, 107698. [Google Scholar] [CrossRef]
- Wu, C.X.; Kim, T.W.; Choi, H.Y. Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 2017, 32, 542–550. [Google Scholar] [CrossRef]
- Wu, C.X.; Kim, T.W.; Park, J.H.; An, H.Q.; Shao, J.J.; Chen, X.Y.; Wang, Z.L. Enhanced Triboelectric Nanogenerators Based on MoS2 Monolayer Nanocomposites Acting as Electron-Acceptor Layers. ACS Nano 2017, 11, 8356–8363. [Google Scholar] [CrossRef]
- Wu, C.X.; Kim, T.W.; Li, F.S.; Guo, T.L. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core- Shell Nanocomposites. ACS Nano 2016, 10, 6449. [Google Scholar] [CrossRef]
- Li, D.L.; Wu, C.X.; Ruan, L.; Wang, J.X.; Qiu, Z.R.; Wang, K.; Liu, Y.; Zhang, Y.F.; Guo, T.L.; Lin, J.T.; et al. Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators. Nano Energy 2020, 75, 104818. [Google Scholar] [CrossRef]
- Wang, J.X.; Wang, K.; Qiu, Z.R.; Liu, Y.; Chen, R.; Wu, C.X.; Lin, J.T. One-Step Synthesis of Hierarchical Structure Polydimethylsiloxane Films with Micro-/Nanosurfaces for Application in Triboelectric Nanogenerators. Energy Technol. 2021, 9, 2100571. [Google Scholar] [CrossRef]
- Dudem, B.; Huynh, N.D.; Kim, W.; Kim, D.H.; Hwang, H.J.; Choi, D.; Yu, J.S. Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy 2017, 42, 269. [Google Scholar] [CrossRef]
- Lin, Z.M.; Zhang, B.B.; Guo, H.Y.; Wu, Z.Y.; Zhou, H.Y.; Yang, J.; Wang, Z.L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908. [Google Scholar] [CrossRef]
- Cui, S.W.; Zheng, Y.B.; Liang, J.; Wang, D.A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018, 11, 1873. [Google Scholar] [CrossRef]
- Lin, H.B.; He, M.H.; Jing, Q.S.; Yang, W.F.; Wang, S.T.; Liu, Y.; Zhang, Y.L.; Li, J.; Li, N.; Ma, Y.W.; et al. Angle-Shaped Triboelectric Nanogenerator for Harvesting Environmental Wind Energy. Nano Energy 2019, 56, 269. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yu, X.; Yin, M.F.; Wang, J.L.; Gao, Q.; Yu, Y.; Cheng, T.H.; Wang, Z.L. Gravity Triboelectric Nanogenerator for the Steady Harvesting of Natural Wind Energy. Nano Energy 2021, 82, 105740. [Google Scholar] [CrossRef]
- Quan, Z.C.; Han, C.B.; Jiang, T.; Wang, Z.L. Robust Thin Films-Based Triboelectric Nanogenerator Arrays for Harvesting Bidirectional Wind Energy. Adv. Energy Mater. 2015, 6, 1501799. [Google Scholar] [CrossRef]
- Fan, X.M.; He, J.; Mu, J.L.; Qian, J.C.; Zhang, N.; Yang, C.Y.; Hou, X.J.; Geng, W.P.; Wang, X.D.; Chou, X.J. Triboelectric-Electromagnetic Hybrid Nanogenerator Driven by Wind for Self-Powered Wireless Transmission in Internet of Things and Self-Powered Wind Speed Sensor. Nano Energy 2019, 68, 104319. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, Z.X.; Zhou, Y.X.; Fu, C.L.; Chen, F.Q.; Zhang, Y.Z.; Lu, H.W.; Wu, Y.H.; Chen, L.; Zheng, H.W. Windmill-inspired hybridized triboelectric nanogenerators integrated with power management circuit for harvesting wind and acoustic energy. Nano Energy 2020, 78, 105244. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.Y.; Yu, X.; Xu, Y.H.; Yang, Y.F.; Liu, S.M.; Cheng, T.H.; Wang, Z.L. Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture. Appl. Energy 2022, 306, 117977. [Google Scholar] [CrossRef]
- Xia, R.H.; Zhang, R.J.; Jie, Y.; Zhao, W.Y.; Cao, X.; Wang, Z.L. Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy 2022, 92, 106685. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Pu, X.; Du, C.H.; Li, L.X.; Jiang, C.Y.; Hu, W.G.; Wang, Z.L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 2016, 10, 1780. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.P.; Ding, Z.; Qin, Z.Y.; Chu, F.L.; Han, Q.K. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy 2020, 78, 104526. [Google Scholar] [CrossRef]
- Xie, Y.N. Grating-Structured Freestanding Triboelectric-Layer Nanogenerator for Harvesting Biomechanical Energy. Meet. Abstr. 2016, MA2016-01, 1282. [Google Scholar] [CrossRef]
- Niu, S.M.; Liu, Y.; Chen, X.Y.; Wang, S.H.; Zhou, Y.S.; Lin, L.; Xie, Y.N.; Wang, Z.L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Shao, J.J.; Willatzen, M.; Yang, Y.; Wang, Z.L. Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators. Appl. Phys. 2022, 55, 345501. [Google Scholar] [CrossRef]
- Zhao, L.L.; Liu, L.Q.; Yang, X.Y.; Hong, H.X.; Yang, Q.M.; Wang, J.W.; Tang, Q.W. Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting. J. Mater. Chem. A 2020, 8, 7880. [Google Scholar] [CrossRef]
- Niu, S.M.; Liu, Y.; Wang, S.H.; Lin, L.; Zhou, Y.S.; Wang, Z.L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184. [Google Scholar] [CrossRef]
- Shao, J.J.; Jiang, T.; Tang, W.; Xu, L.; Kim, T.W.; Wu, C.X.; Chen, X.Y.; Chen, B.D.; Xiao, T.X.; Bai, Y.; et al. Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy 2018, 48, 292. [Google Scholar] [CrossRef]
- Song, W.Z.; Qiu, H.J.; Zhang, J.; Yu, M.; Ramakrishna, S.; Wang, Z.L.; Long, Y.Z. Sliding mode direct current triboelectric nanogenerators. Nano Energy 2021, 90, 106531. [Google Scholar] [CrossRef]
- Yong, S.; Wang, J.Y.; Yang, L.J.; Wang, H.Q.; Luo, H.; Wang, Z.L. Auto-Switching Self-Powered System for Efficient Broad-Band Wind Energy Harvesting Based on Dual-Rotation Shaft Triboelectric Nanogenerator. Adv. Energy Mater. 2021, 11, 2101194. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, Q.X.; Wu, Y.; Wu, J.; Yuan, S.L.; Tian, D.J.; Hu, C.G.; Wang, X. An Ultra-Durable Windmill-Like Hybrid Nanogenerator for Steady and Efficient Harvesting of Low-Speed Wind Energy. Nano-Micro Lett. 2020, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, E.; Chen, T.Y.; Wang, J.Y.; Hu, Z.Y.; Mi, J.C.; Pan, X.X.; Xu, M.Y. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 2020, 78, 105279. [Google Scholar] [CrossRef]
- Ma, P.; Zhu, H.R.; Lu, H.; Zeng, Y.M.; Zheng, N.; Wang, Z.L.; Cao, X. Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection. Nano Energy 2021, 86, 106032. [Google Scholar] [CrossRef]
- Feng, Y.G.; Zhang, L.Q.; Zheng, Y.B.; Wang, D.A.; Zhou, F.; Liu, W.M. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 2019, 55, 260. [Google Scholar] [CrossRef]
- Ge, G.; Wang, Q.; Zhang, Y.Z.; Alshareef, H.N.; Dong, X.C. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437. [Google Scholar] [CrossRef]
- Soriano, M.A.; Reyes, P.J.; Rhea, M.R.; Marín, P.J. The Optimal Load for Maximal Power Production During Lower-Body Resistance Exercises: A Meta-Analysis. Sports Med. 2015, 45, 1191. [Google Scholar] [CrossRef]
- Liao, Y.B.; Liang, J.R. Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters. Smart Mater. Struct. 2018, 27, 075053. [Google Scholar] [CrossRef]
Type | VOC (V) | ISC (μA) | Power (mW) | Reference |
---|---|---|---|---|
Core–shell TENG | 180 | 5.5 | 0.42 | This work |
Methyl-graphdiyne TENG | 100 | 3.5 | \ | [12] |
Pendulum TENG | 56 | 0.5 | \ | [13] |
Turbine-disk-type TENG | 230 | 9 | 0.37 | [14] |
Angle-shaped TENG | 64 | 2.5 | 0.2 | [15] |
Fluttering double-flag type TENG | 70 | 6 | \ | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, W.; Wang, K.; Liao, Y.; Zheng, J.; Zhou, X.; Lin, J.; Zhang, Y.; Wu, C. Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting. Nanomaterials 2022, 12, 4046. https://doi.org/10.3390/nano12224046
Wang Q, Li W, Wang K, Liao Y, Zheng J, Zhou X, Lin J, Zhang Y, Wu C. Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting. Nanomaterials. 2022; 12(22):4046. https://doi.org/10.3390/nano12224046
Chicago/Turabian StyleWang, Qiman, Wenhao Li, Kun Wang, Yitao Liao, Junjie Zheng, Xiongtu Zhou, Jianpu Lin, Yongai Zhang, and Chaoxing Wu. 2022. "Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting" Nanomaterials 12, no. 22: 4046. https://doi.org/10.3390/nano12224046
APA StyleWang, Q., Li, W., Wang, K., Liao, Y., Zheng, J., Zhou, X., Lin, J., Zhang, Y., & Wu, C. (2022). Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting. Nanomaterials, 12(22), 4046. https://doi.org/10.3390/nano12224046