Synthesis and HRTEM Investigation of EuRbFe4As4 Superconductor
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fertig, W.A.; Johnston, D.C.; DeLong, L.E.; McCallum, R.W.; Maple, M.B.; Matthias, B.T. Destruction of superconductivity at the onset of long-range magnetic order in the compound ErRh4B4. Phys. Rev. Lett. 1977, 38, 987–990. [Google Scholar] [CrossRef]
- Bulaevskii, L.N.; Buzdin, A.I.; Kulić, M.L.; Panjukov, S.V. Coexistence of superconductivity and magnetism theoretical predictions and experimental results. Adv. Phys. 1985, 34, 175–261. [Google Scholar] [CrossRef]
- Ishikawa, M.; Fischer, Ø. Destruction of superconductivity by magnetic ordering in Ho1.2Mo6S8. Solid State Commun. 1977, 23, 37–39. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La [O1−xFx] FeAs (x = 0.05–0.12) with T c = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Shen, B.; Mu, G.; Zhu, X.; Han, F.; Zeng, B.; Wen, H.H. High-Tc superconductivity induced by doping rare-earth elements into CaFeAsF. Europhys. Lett. 2009, 85, 67003. [Google Scholar] [CrossRef]
- Wu, G.; Xie, Y.L.; Chen, H.; Zhong, M.; Liu, R.H.; Shi, B.C.; Li, Q.J.; Wang, X.; Wu, T.; Yan, Y.J.; et al. Superconductivity at 56 K in samarium-doped SrFeAsF. J. Phys. Condens. Matter 2009, 21, 142203. [Google Scholar] [CrossRef]
- Iyo, A.; Kawashima, K.; Kinjo, T.; Nishio, T.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Kihou, K.; Eisaki, H.; Yoshida, Y. New-structure-type Fe-based superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). J. Am. Chem. Soc. 2016, 138, 3410–3415. [Google Scholar] [CrossRef]
- Kawashima, K.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Kihou, K.; Yoshida, Y.; Eisaki, H.; Ogino, H.; Iyo, A. Superconductivity in a new 1144-type family of (La, Na) AFe4As4 (A = Rb or Cs). J. Phys. Chem. Lett. 2018, 9, 868–873. [Google Scholar] [CrossRef]
- Huang, Q.; Qiu, Y.; Bao, W.; Green, M.A.; Lynn, J.W.; Gasparovic, Y.C.; Wu, T.; Wu, G.; Chen, X.H. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. Phys. Rev. Lett. 2008, 101, 257003. [Google Scholar] [CrossRef]
- Yuan, H.Q.; Singleton, J.; Balakirev, F.; Baily, S.A.; Chen, G.F.; Luo, J.L.; Wang, N.L. Nearly isotropic superconductivity in (Ba, K) Fe2As2. Nature 2009, 457, 565–568. [Google Scholar] [CrossRef]
- Stolyarov, V.S.; Casano, A.; Belyanchikov, M.A.; Astrakhantseva, A.S.; Grebenchuk, S.Y.; Baranov, D.S.; Golovchanskiy, I.A.; Voloshenko, I.; Zhukova, E.S.; Gorshunov, B.P.; et al. Unique interplay between superconducting and ferromagnetic orders in EuRbFe4As4. Phys. Rev. B 2018, 98, 140506. [Google Scholar] [CrossRef]
- Devizorova, Z.; Buzdin, A. Superconductivity-driven helical magnetic structure in EuRbFe4As4 ferromagnetic supercoductor. Phys. Rev. B 2019, 100, 104523. [Google Scholar] [CrossRef]
- Stolyarov, V.S.; Pervakov, K.S.; Astrakhantseva, A.S.; Golovchanskiy, I.A.; Vyalikh, D.V.; Kim, T.K.; Eremeev, S.V.; Vlasenko, V.A.; Pudalov, V.M.; Golubov, A.A.; et al. Electronic Structures and Surface Reconstructions in Magnetic Superconductor RbEuFe4As4. J. Phys. Chem. Lett. 2020, 11, 9393–9399. [Google Scholar] [CrossRef]
- Kim, T.K.; Pervakov, K.S.; Evtushinsky, D.V.; Jung, S.W.; Poelchen, G.; Kummer, K.; Vlasenko, V.A.; Sadakov, A.V.; Usoltsev, A.S.; Pudalov, V.M.; et al. Electronic structure and coexistence of superconductivity with magnetism in RbEuFe4As4. Phys. Rev. B 2021, 103, 174517. [Google Scholar] [CrossRef]
- Bristow, M.; Knafo, W.; Reiss, P.; Meier, W.; Canfield, P.C.; Blundell, S.J.; Coldea, A.I. Competing pairing interactions responsible for the large upper critical field in a stoichiometric iron-based superconductor CaKFe4As4. Phys. Rev. B 2020, 101, 134502. [Google Scholar] [CrossRef]
- Smylie, M.P.; Willa, K.; Bao, J.-K.; Ryan, K.; Islam, Z.; Claus, H.; Simsek, Y.; Diao, Z.; Rydh, A.; Koshelev, A.E.; et al. Anisotropic superconductivity and magnetism in single-crystal RbEuFe4As4. Phys. Rev. B 2018, 98, 104503. [Google Scholar] [CrossRef]
- Song, B.Q.; Nguyen, M.C.; Wang, C.Z.; Ho, K.M. Stability of the 1144 phase in iron pnictides. Phys. Rev. B 2018, 97, 094105. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Ji, L.; Cao, G. Block-layer model for intergrowth structures. Nano Res. 2021, 14, 3629–3635. [Google Scholar] [CrossRef]
- Liu, Y.B.; Liu, Y.; Cao, G. Iron-based magnetic superconductors AEuFe4As4 (A = Rb, Cs): Natural superconductor-ferromagnet hybrids. J. Phys. Condens. Matter 2021, 34, 093001. [Google Scholar] [CrossRef]
- Uhoya, W.; Tsoi, G.; Vohra, Y.K.; McGuire, M.A.; Sefat, A.S.; Sales, B.C.; Mandrus, D.; Weir, S.T. Anomalous compressibility effects and superconductivity of EuFe2As2 under high pressures. J. Phys. Condens. Matter 2010, 22, 292202. [Google Scholar] [CrossRef][Green Version]
- Maiwald, J.; Gegenwart, P. Interplay of 4f and 3d moments in EuFe2As2 iron pnictides. Phys. Status Solidi 2017, 254, 1600150. [Google Scholar] [CrossRef]
- Grinenko, V.; Drechsler, S.-L.; Abdel-Hafiez, M.; Aswartham, S.; Wolter, A.U.B.; Wurmehl, S.; Hess, C.; Nenkov, K.; Fuchs, G.; Efremov, D.V.; et al. Disordered magnetism in superconducting KFe2As2 single crystals. Phys. Status Solidi 2013, 250, 593–598. [Google Scholar] [CrossRef]
- Hardy, F.; Böhmer, A.E.; Aoki, D.; Burger, P.; Wolf, T.; Schweiss, P.; Heid, R.; Adelmann, P.; Yao, Y.X.; Kotliar, G.; et al. Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor KFe2As2. Phys. Rev. Lett. 2013, 111, 027002. [Google Scholar] [CrossRef]
- Ishida, S.; Iyo, A.; Ogino, H.; Eisaki, H.; Takeshita, N.; Kawashima, K.; Yanagisawa, K.; Kobayashi, Y.; Kimoto, K.; Abe, H.; et al. Unique defect structure and advantageous vortex pinning properties in superconducting CaKFe4As4. NPJ Quantum Mater. 2019, 4, 27. [Google Scholar] [CrossRef]
- Sugali, P.K.N.; Ishida, S.; Kimoto, K.; Yanagisawa, K.; Kamiya, Y.; Tsuchiya, Y.; Kawashima, K.; Yoshida, Y.; Iyo, A.; Eisaki, H.; et al. Intrinsic defect structures of polycrystalline CaKFe4As4 superconductors. Phys. Chem. Chem. Phys. 2021, 23, 19827–19833. [Google Scholar] [CrossRef]
- Vlasenko, V.; Pervakov, K.; Gavrilkin, S. Vortex pinning and magnetic phase diagram of EuRbFe4As4 iron-based superconductor. Supercond. Sci. Technol. 2020, 33, 084009. [Google Scholar] [CrossRef]
- Eltsev, Y.F.; Pervakov, K.S.; Vlasenko, V.A.; Gavrilkin, S.Y.E.; Khlybov, E.P.; Pudalov, V.M. Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family. Uspekhi Fiz. Nauk. 2014, 184, 897–902. [Google Scholar] [CrossRef]
- Kim, T.; Pervakov, K.S.; Vlasenko, V.A.; Sadakov, A.V.; Usol’Tsev, A.; Evtushinsky, D.; Jung, S.; Poelchen, G.; Kummer, K.; Roditchev, D.; et al. Novel magnetic stoichiometric superconductor compound EuRbFe4As4. Phys. Uspekhi 2022, 65, 740–747. [Google Scholar] [CrossRef]
- Bao, J.K.; Willa, K.; Smylie, M.P.; Chen, H.; Welp, U.; Chung, D.Y.; Kanatzidis, M.G. Single crystal growth and study of the ferromagnetic superconductor RbEuFe4As4. Cryst. Growth Des. 2018, 18, 3517–3523. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, A.F.; Hong, X.C.; Zhang, J.; Pan, B.Y.; Pan, J.; Xu, Y.; Luo, X.G.; Chen, X.H.; Li, S.Y. Heat transport in RbFe2As2 single crystals: Evidence for nodal superconducting gap. Phys. Rev. B 2015, 91, 024502. [Google Scholar] [CrossRef]
- Khim, S.; Aswartham, S.; Grinenko, V.; Efremov, D.; Blum, C.G.F.; Steckel, F.; Gruner, D.; Wolter, A.U.B.; Drechsler, S.-L.; Heß, C.; et al. A calorimetric investigation of RbFe2As2 single crystals. Phys. Status Solidi 2017, 254, 1600208. [Google Scholar] [CrossRef]
- Jiang, S.; Luo, Y.; Ren, Z.; Zhu, Z.; Wang, C.; Xu, X.; Tao, Q.; Cao, G.; Xu, Z. Metamagnetic transition in EuFe2As2 single crystals. New J. Phys. 2009, 11, 025007. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of high-field superconductors. Rev. Mod. Phys. 1964, 36, 31–39. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degtyarenko, A.Y.; Karateev, I.A.; Ovcharov, A.V.; Vlasenko, V.A.; Pervakov, K.S. Synthesis and HRTEM Investigation of EuRbFe4As4 Superconductor. Nanomaterials 2022, 12, 3801. https://doi.org/10.3390/nano12213801
Degtyarenko AY, Karateev IA, Ovcharov AV, Vlasenko VA, Pervakov KS. Synthesis and HRTEM Investigation of EuRbFe4As4 Superconductor. Nanomaterials. 2022; 12(21):3801. https://doi.org/10.3390/nano12213801
Chicago/Turabian StyleDegtyarenko, Alena Yu., Igor A. Karateev, Alexey V. Ovcharov, Vladimir A. Vlasenko, and Kirill S. Pervakov. 2022. "Synthesis and HRTEM Investigation of EuRbFe4As4 Superconductor" Nanomaterials 12, no. 21: 3801. https://doi.org/10.3390/nano12213801
APA StyleDegtyarenko, A. Y., Karateev, I. A., Ovcharov, A. V., Vlasenko, V. A., & Pervakov, K. S. (2022). Synthesis and HRTEM Investigation of EuRbFe4As4 Superconductor. Nanomaterials, 12(21), 3801. https://doi.org/10.3390/nano12213801