Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives
Abstract
:1. Introduction
1.1. Progress and Classification
1.1.1. EDLC (Electrochemical Double-Layer Capacitors)
1.1.2. Pseudocapacitor
1.1.3. Hybrid Capacitor
1.2. Carbon Nanotubes
1.2.1. Single-Wall Carbon Nanotubes (SWCNTS)
1.2.2. Multi-Wall Carbon Nanotubes (MWCNTs)
1.3. Graphene Derivatives
1.3.1. Graphene Oxide (GO)
1.3.2. Reduced Graphene Oxide (rGO)
1.4. Activated Carbons
1.5. Carbon Fibers
1.6. Carbon Aerogels
1.7. Other Carbon Materials
2. Carbon–Nanomaterial Hybrid Supercapacitors
2.1. Ceramic-Based Hybrid Supercapacitors
2.2. Conductive Polymer-Based Supercapacitors
2.3. MOFs-Based Hybrid Supercapacitors
3. Challenges and Prospects
Challenges and Optimization Strategies for Improving Energy Density and Power Density of Supercapacitors
- 1.
- The energy density of a supercapacitor is the amount of energy that can be stored in the device per unit volume. This is an important parameter when choosing a supercapacitor for a particular application. Higher energy density () means that more energy can be stored in a given volume, making the supercapacitor more compact.
- i.
- Improve the specific capacitance (C) of the material or develop new electrode materials with high specific capacitance.
- ii.
- Enlarge the voltage window (V) of the supercapacitor.
- iii.
- Design and optimize hybrid batteries/supercapacitors or symmetric supercapacitors. Asymmetric supercapacitors can fully exploit the different potential windows of the two electrodes to maximize the voltages that can be applied to the capacitor. These kinds of devices can effectively increase the energy density of devices.
- 2.
- Power density describes the rate performance of energy storage devices. As can be seen from Figure 12, compared with other energy storage devices, supercapacitors show higher power density [214]. From the formula of power density (, where P is power density, V is the potential window, and R is the equivalent series resistance), it can be seen that equivalent series resistance (ESR) and voltage window (V) have a direct effect on power density. Furthermore, the voltage window not only has an effect on the energy density but also on the power density.
- (1)
- Nanomaterials are used to reduce the size of particles and increase the specific surface area of supercapacitors. Nanomaterials can have different morphologies or contain different effective pore sizes. Functional groups improve the surface wettability of electrode materials with the electrolyte, improving the cycle life.
- (2)
- The aqueous electrolyte has the advantages of being very concentrated, having a small ion radius, and having low resistance. Water can decompose at just 1.23 V, greatly limiting the device’s energy and power density. When using an electrolyte containing an organic compound, the voltage range extends to about 2.5–2.7 V. By increasing the purity of the electrolyte, it is possible to reduce the influence of impurities on the device’s working voltage range and cycle life.
- (3)
- Electrochemical resistance (ERS) describes the resistance of an electrode and its interface with a current collector. It also determines how well an electrode conducts current. ESR is determined by the area and porosity of the electrode, the conductivity of the electrolyte and separator, and the operating temperature. Electrodes are usually made by applying an electrically active material, conductive agent, and binder to a slurry that is applied to a current collector.
- (4)
- The operating temperature has a significant effect on the supercapacitor. Its capacitance will decrease under high temperatures, especially in the continuous high-temperature operation state. In addition, the working temperature greatly influences the viscosity of the electrolyte and the ionic conductivity.
4. Outlook and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: Singapore, 2010; pp. 320–329. [Google Scholar]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285. [Google Scholar] [CrossRef] [Green Version]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? ACS Publications: Washington, DC, USA, 2004. [Google Scholar]
- Liu, J.L.; Wang, J.; Xu, C.H.; Jiang, H.; Li, C.Z.; Zhang, L.L.; Lin, J.Y.; Shen, Z.X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv. Sci. 2018, 5, 1700322. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, G.; Kim, C.H.; Mahajan, R.L.; Lee, S.Y.; Park, S.J. Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy Environ. Sci. 2022, 15, 2233–2258. [Google Scholar] [CrossRef]
- Chen, C.J.; Zhang, Y.; Li, Y.J.; Dai, J.Q.; Song, J.W.; Yao, Y.G.; Gong, Y.H.; Kierzewski, I.; Xie, J.; Hu, L.B. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 2017, 10, 538–545. [Google Scholar] [CrossRef]
- Heo, Y.J.; Lee, J.H.; Kim, S.H.; Mun, S.J.; Lee, S.Y.; Park, S.J. Paper-Derived Millimeter-Thick Yarn Supercapacitors Enabling High Volumetric Energy Density. ACS Appl. Mater Interfaces 2022, 114, 42671–42682. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Zhang, Q.Y.; Cui, L.F. Recent progress of mesoporous materials for high performance supercapacitors. Micropor. Mesopor. Mat. 2021, 314, 110870. [Google Scholar] [CrossRef]
- Kiamahalleh, M.V.; Zein, S.H.S.; Najafpour, G.; SATA, S.A.; Buniran, S. Multiwalled carbon nanotubes based nanocomposites for supercapacitors: A review of electrode materials. Nano 2012, 7, 1230002. [Google Scholar] [CrossRef]
- Conway, B.; Bockris, J.M.; Ammar, I. The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution. Trans. Faraday Soc. 1951, 47, 756–766. [Google Scholar] [CrossRef]
- Zhao, P.; Yao, M.; Ren, H.; Wang, N.; Komarneni, S. Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 2019, 463, 931–938. [Google Scholar] [CrossRef]
- Du, X.; Chen, Q.; Xiang, C.; Zou, Y.; Xu, F.; Xie, J.; Sun, L. Formation of Highly Dispersed Ultrafine MnO2 Nanoparticles on Nitrogen-doped Porous Carbon for Supercapacitor Applications. Int. J. Electrochem. Sci. 2019, 14, 4195–4205. [Google Scholar] [CrossRef]
- Shinde, P.A.; Lokhande, V.C.; Ji, T.; Lokhande, C.D. Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitor application. J. Colloid Interface Sci. 2017, 498, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Gund, G.S.; Lokhande, C.D.; Park, H.S. Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application. J. Alloy. Compd. 2018, 741, 549–556. [Google Scholar] [CrossRef]
- Kandasamy, N.; Venugopal, T.; Kannan, K. Facile One-Pot Synthesis of Flower Like Cobalt Oxide Nanostructures on Nickel Plate and Its Supercapacitance Properties. J. Nanosci. Nanotechnol. 2018, 18, 3960–3968. [Google Scholar] [CrossRef]
- Ye, Z.G.; Li, T.; Ma, G.; Peng, X.Y.; Zhao, J. Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sources 2017, 351, 51–57. [Google Scholar] [CrossRef]
- Pan, H.; Li, J.Y.; Feng, Y.P. Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 2010, 5, 654–668. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Kim, J.I.; Park, S.J. Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy 2014, 78, 298–303. [Google Scholar] [CrossRef]
- Yuan, C.Z.; Li, J.Y.; Hou, L.R.; Zhang, X.G.; Shen, L.F.; Lou, X.W. Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597. [Google Scholar] [CrossRef]
- Frackowiak, E.; Jurewicz, K.; Delpeux, S.; Béguin, F. Nanotubular materials for supercapacitors. J. Power Sources 2001, 97, 822–825. [Google Scholar] [CrossRef]
- Son, Y.R.; Park, S.J. Effect of graphene oxide/carbon nanotube ratio on electrochemical behaviors of spongy bone-like reduced graphene oxide/carbon nanotube foam prepared by simple and green approach. Chem. Eng. J. 2019, 373, 1020–1029. [Google Scholar] [CrossRef]
- Zhu, F.F.; Liu, W.J.; Liu, Y.; Shi, W.D. Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem. Eng. J. 2020, 383, 123150. [Google Scholar] [CrossRef]
- Hsieh, C.E.; Chang, C.; Gupta, S.; Hsiao, C.H.; Lee, C.Y.; Tai, N.H. Binder-free CoMn2O4/carbon nanotubes composite electrodes for high-performance asymmetric supercapacitor. J. Alloy. Compd. 2022, 897, 163231. [Google Scholar] [CrossRef]
- Guan, D.; Gao, Z.; Yang, W.; Wang, J.; Yuan, Y.; Wang, B.; Zhang, M.; Liu, L. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Mater. Sci. Eng. B 2013, 178, 736–743. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, S.; Jewell, D.; Chen, G.Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788. [Google Scholar] [CrossRef]
- Lippens, P.E.; Womes, M.; Kubiak, P.; Jumas, J.C.; Olivier-Fourcade, J. Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy. Solid State Sci. 2004, 6, 161–166. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, S.C.; Jung, J.H.; Kim, H.J. Pore characterization of multi-walled carbon nanotubes modified by KOH. Chem. Phys. Lett. 2005, 416, 251–255. [Google Scholar] [CrossRef]
- Ji, L.; Shao, Y.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ. Sci. Technol. 2010, 44, 6429–6436. [Google Scholar] [CrossRef]
- Yanyan, L.; Kurniawan, T.A.; Albadarin, A.B.; Walker, G. Enhanced removal of acetaminophen from synthetic wastewater using multi-walled carbon nanotubes (MWCNTs) chemically modified with NaOH, HNO3/H2SO4, ozone, and/or chitosan. J. Mol. Liq. 2018, 251, 369–377. [Google Scholar] [CrossRef]
- Shiraishi, M.; Takenobu, T.; Yamada, A.; Ata, M.; Kataura, H. Hydrogen storage in single-walled carbon nanotube bundles and peapods. Chem. Phys. Lett. 2002, 358, 213–218. [Google Scholar] [CrossRef]
- Khater, H.; El Gawaad, H.A. Characterization of alkali activated geopolymer mortar doped with MWCNT. Constr. Build. Mater. 2016, 102, 329–337. [Google Scholar] [CrossRef]
- Raymundo-Pinero, E.; Azaïs, P.; Cacciaguerra, T.; Cazorla-Amorós, D.; Linares-Solano, A.; Béguin, F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 2005, 43, 786–795. [Google Scholar] [CrossRef]
- Frackowiak, E.; Delpeux, S.; Jurewicz, K.; Szostak, K.; Cazorla-Amoros, D.; Beguin, F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 2002, 361, 35–41. [Google Scholar] [CrossRef]
- Gupta, V.; Miura, N. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim. Acta 2006, 52, 1721–1726. [Google Scholar] [CrossRef]
- Xia, C.; Leng, M.Z.; Tao, W.; Wang, Q.F.; Gao, Y.F.; Zhang, Q. Polyaniline/carbon nanotube core-shell hybrid and redox active electrolyte for high-performance flexible supercapacitor. J. Mater. Sci.-Mater. Electron. 2019, 30, 4427–4436. [Google Scholar] [CrossRef]
- Lee, T.H.; Pham, D.T.; Sahoo, R.; Seok, J.; Luu, T.H.T.; Lee, Y.H. High energy density and enhanced stability of asymmetric supercapacitors with mesoporous MnO2@CNT and nanodot MoO3@CNT free-standing films. Energy Storage Mater. 2018, 12, 223–231. [Google Scholar] [CrossRef]
- Tian, G.Y.; Liu, L.; Meng, Q.H.; Cao, B. Facile synthesis of laminated graphene for advanced supercapacitor electrode material via simultaneous reduction and N-doping. J. Power Sources 2015, 274, 851–861. [Google Scholar] [CrossRef]
- Yeo, C.S.; Heo, Y.J.; Shin, M.K.; Lee, J.H.; Park, Y.Y.; Mun, S.J.; Ismail, Y.A.; Sinh, L.; Park, S.J.; Park, S.Y. Ultralong and Millimeter-Thick Graphene Oxide Supercapacitors with High Volumetric Capacitance. ACS Appl. Energy Mater. 2021, 4, 8059–8069. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.Y.; Sinh, L.H.; Yeo, C.S.; Son, Y.R.; Cho, K.R.; Song, Y.; Ju, S.; Shin, M.K.; Park, S.J.; et al. Maximizing volumetric energy density of all-graphene-oxide-supercapacitors and their potential applications for energy harvest. J. Power Sources 2017, 346, 113–119. [Google Scholar] [CrossRef]
- Gao, Y.D.; Zhang, Y.Y.; Zhang, Y.; Xie, L.J.; Li, X.M.; Su, F.Y.; Wei, X.X.; Xu, Z.W.; Chen, C.M.; Cai, R. Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode. J. Energy Chem. 2016, 25, 49–54. [Google Scholar] [CrossRef]
- Yan, Z.X.; Gao, Z.H.; Zhang, Z.Y.; Dai, C.J.; Wei, W.; Shen, P.K. Graphene Nanosphere as Advanced Electrode Material to Promote High Performance Symmetrical Supercapacitor. Small 2021, 17, 2007915. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.A.; Mousavi, S.M.; Naderi, H.R.; Bahrani, S.; Arjmand, M.; Hagfeldt, A.; Chiang, W.H.; Ramakrishna, S. Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable supercapacitor. Chem. Eng. J. 2021, 418, 129396. [Google Scholar] [CrossRef]
- Wen, D.; Ying, G.B.; Liu, L.; Li, Y.X.; Sun, C.; Hu, C.; Zhao, Y.L.; Ji, Z.Y.; Zhang, J.F.; Wang, X. Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes. J. Alloy. Compd. 2022, 900, 163436. [Google Scholar] [CrossRef]
- Tian, J.; Wu, S.; Yin, X.L.; Wu, W. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl. Surf. Sci. 2019, 496, 143696. [Google Scholar] [CrossRef]
- Li, Z.N.; Gadipelli, S.; Yang, Y.C.; He, G.J.; Guo, J.; Li, J.T.; Lu, Y.; Howard, C.A.; Brett, D.J.L.; Parkin, I.P.; et al. Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Mater. 2019, 17, 12–21. [Google Scholar] [CrossRef]
- Sahu, V.; Shekhar, S.; Sharma, R.K.; Singh, G. Ultrahigh Performance Supercapacitor from Lacey Reduced Graphene Oxide Nanoribbons. ACS Appl. Mater. Interfaces 2015, 7, 3110–3116. [Google Scholar] [CrossRef]
- Bag, S.; Samanta, A.; Bhunia, P.; Raj, C.R. Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. Int. J. Hydroen. Energy 2016, 41, 22134–22143. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.J. Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride). J. Solid State Chem. 2013, 207, 158–162. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Y.; Cao, M.; Yao, J. Two-step preparation of hierarchical porous carbon from KOH-activated wood sawdust for supercapacitor. Mater. Chem. Phys. 2019, 238, 121956. [Google Scholar] [CrossRef]
- Jin, Z.; Yan, X.; Yu, Y.; Zhao, G. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2014, 2, 11706–11715. [Google Scholar] [CrossRef]
- Liu, X.; Lai, C.; Xiao, Z.; Zou, S.; Liu, K.; Yin, Y.; Liang, T.; Wu, Z. Superb electrolyte penetration/absorption of three-dimensional porous carbon nanosheets for multifunctional supercapacitor. ACS Appl. Energy Mater. 2019, 2, 3185–3193. [Google Scholar] [CrossRef]
- Zequine, C.; Ranaweera, C.; Wang, Z.; Singh, S.; Tripathi, P.; Srivastava, O.; Gupta, B.K.; Ramasamy, K.; Kahol, P.; Dvornic, P. High per formance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci. Rep. 2016, 6, 31704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Li, Q.; Wang, J.; Ye, J.; Fu, G.; Zhai, L.; Zhu, Y. Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29, 20991–21001. [Google Scholar] [CrossRef]
- Echeverry-Montoya, N.; Prías-Barragán, J.; Tirado-Mejía, L.; Agudelo, C.; Fonthal, G.; Ariza-Calderón, H. Fabrication and electrical response of flexible supercapacitor based on activated carbon from bamboo. Phys. Status Solidi C 2017, 14, 1600258. [Google Scholar] [CrossRef]
- Zhong, Y.; Shi, T.; Huang, Y.; Cheng, S.; Liao, G.; Tang, Z. One-step synthesis of porous carbon derived from starch for all-carbon binder-free high-rate supercapacitor. Electrochim. Acta 2018, 269, 676–685. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, C.; Aoki, Y.; Habazaki, H. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 7292–7303. [Google Scholar] [CrossRef]
- Kim, M.-H.; Tang, J.; Jang, S.-J.; Pol, V.G.; Roh, K.C. Porous graphitic activated carbon sheets upcycled from starch-based packing peanuts for applications in ultracapacitors. J. Alloy. Compd. 2019, 805, 1282–1287. [Google Scholar] [CrossRef]
- Ashraf, C.M.; Anilkumar, K.; Jinisha, B.; Manoj, M.; Pradeep, V.; Jayalekshmi, S. Acid washed, steam activated, coconut shell derived carbon for high power supercapacitor applications. J. Electrochem. Soc. 2018, 165, A900–A909. [Google Scholar] [CrossRef]
- Barzegar, F.; Khaleed, A.A.; Ugbo, F.U.; Oyeniran, K.O.; Momodu, D.Y.; Bello, A.; Dangbegnon, J.K.; Manyala, N. Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass. AIP Adv. 2016, 6, 115306. [Google Scholar] [CrossRef]
- Yin, L.; Chen, Y.; Zhao, X.; Hou, B.; Cao, B. 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Des. 2016, 111, 44–50. [Google Scholar] [CrossRef]
- Xu, X.; Gao, J.; Tian, Q.; Zhai, X.; Liu, Y. Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor. Appl. Surf. Sci. 2017, 411, 170–176. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, L.; Zhu, H.; Guan, Y.; Zhang, Q. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Wen, W.-C.; Hsu, H.-C.; Yao, B.-Y. High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Adv. Powder Technol. 2016, 27, 1387–1395. [Google Scholar] [CrossRef]
- Plaza-Recobert, M.; Trautwein, G.; Pérez-Cadenas, M.; Alcañiz-Monge, J. Preparation of binderless activated carbon monoliths from cocoa bean husk. Micropor. Mesopor. Mat. 2017, 243, 28–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Song, N.; Li, X. High-performance supercapacitors and batteries derived from activated banana-peel with porous structures. Electrochim. Acta 2016, 222, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- Fasakin, O.; Dangbegnon, J.K.; Momodu, D.Y.; Madito, M.; Oyedotun, K.O.; Eleruja, M.; Manyala, N. Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochim. Acta 2018, 262, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, L.; Qi, P.; Zhu, M.; Wang, G.; Ma, Y.; Guo, X.; Chen, H.; Zhang, B.; Zhao, Z. Nitrogen-doped banana peel–derived porous carbon foam as binder-free electrode for supercapacitors. Nanomaterials 2016, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Chen, W.; Liu, K.; Cui, P.; Zhan, D. Porous biomass carbon derived from peanut shells as electrode materials with enhanced electrochemical performance for supercapacitors. Int. J. Electrochem. Sci. 2018, 13, 5370–5381. [Google Scholar] [CrossRef]
- Sylla, N.; Ndiaye, N.; Ngom, B.; Momodu, D.; Madito, M.; Mutuma, B.; Manyala, N. Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste. Sci. Rep. 2019, 9, 13673. [Google Scholar] [CrossRef]
- Gao, Y.; Li, L.; Jin, Y.; Wang, Y.; Yuan, C.; Wei, Y.; Chen, G.; Ge, J.; Lu, H. Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor. Appl. Energy 2015, 153, 41–47. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, N.; Liu, D.; Xu, J.; Sha, J.; Yin, J.; Tan, X.; Yang, H.; Lu, H.; Lin, H. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 2017, 128, 618–625. [Google Scholar] [CrossRef]
- Taer, E.; Manik, S.T.; Taslim, R.; Dahlan, D.; Deraman, M. Preparation of activated carbon monolith electrodes from sugarcane bagasse by physical and physical-chemical activation process for supercapacitor application. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerlands, 2014; pp. 179–182. [Google Scholar]
- Feng, H.; Hu, H.; Dong, H.; Xiao, Y.; Cai, Y.; Lei, B.; Liu, Y.; Zheng, M. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 2016, 302, 164–173. [Google Scholar] [CrossRef]
- Inal, I.I.G.; Holmes, S.M.; Banford, A.; Aktas, Z. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 2015, 357, 696–703. [Google Scholar] [CrossRef]
- Ma, G.; Li, J.; Sun, K.; Peng, H.; Feng, E.; Lei, Z. Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode. J. Solid State Electrochem. 2017, 21, 525–535. [Google Scholar] [CrossRef]
- Deng, J.; Peng, Z.; Xiao, Z.; Song, S.; Dai, H.; Li, L. Porous Doped Carbons from Anthracite for High-Performance Supercapacitors. Appl. Sci. 2020, 10, 1081. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Jin, B.; Bai, P.; Zhang, W.; Xu, L. Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 2019, 9, 24344–24356. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak, R.; Jurewicz, K.; Nowicki, P.; Babeł, K.; Wachowska, H. Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors. Fuel 2010, 89, 3457–3467. [Google Scholar] [CrossRef]
- Hsu, L.-Y.; Teng, H. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process. Technol. 2000, 64, 155–166. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Wang, S.; Cao, Z.; Wu, Z.; Wang, H.; Gao, Y.; Liu, J. Activated carbon prepared from lignite as supercapacitor electrode materials. Electroanalysis 2016, 28, 243–248. [Google Scholar] [CrossRef]
- Xing, B.-L.; Guo, H.; Chen, L.-J.; Chen, Z.-F.; Zhang, C.-X.; Huang, G.-X.; Xie, W.; Yu, J.-L. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors. Fuel Process. Technol. 2015, 138, 734–742. [Google Scholar] [CrossRef]
- Xing, B.; Huang, G.; Chen, L.; Guo, H.; Zhang, C.; Xie, W.; Chen, Z. Microwave synthesis of hierarchically porous activated carbon from lignite for high performance supercapacitors. J. Porous Mater. 2016, 23, 67–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Huang, J.; Du, D.; Xing, W.; Yan, Z. Enhanced Capacitive Performance of N-Doped Activated Carbon from Petroleum Coke by Combining Ammoxidation with KOH Activation. Nanoscale Res. Lett. 2016, 11, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Cai, T.; Huang, J.; Xing, W.; Yan, Z. Functionalized activated carbon prepared form petroleum coke with high-rate supercapacitive performance. J. Mater. Res. 2016, 31, 3723–3730. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Huang, J.; Xing, W.; Yan, Z. Functionalization of petroleum coke-derived carbon for synergistically enhanced capacitive performance. Nanoscale Res. Lett. 2016, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Chen, M.; Wang, C.; Wang, J.; Zheng, J. Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. J. Power Sources 2011, 196, 550–558. [Google Scholar] [CrossRef]
- Qiao, W.; Yoon, S.-H.; Mochida, I. KOH activation of needle coke to develop activated carbons for high-performance EDLC. Energy Fuels 2006, 20, 1680–1684. [Google Scholar] [CrossRef]
- Wang, J.-z.; Wang, L.-q.; Chen, M.-m.; Wang, C.-y.; Zhang, C.; He, F. Nanoporous carbons from oxidized green needle coke for use in high performance supercapacitors. New Carbon Mater. 2015, 30, 141–149. [Google Scholar] [CrossRef]
- Mitani, S.; Lee, S.-I.; Yoon, S.-H.; Korai, Y.; Mochida, I. Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor. J. Power Sources 2004, 133, 298–301. [Google Scholar] [CrossRef]
- Meng, X.; Cao, Q.; Jin, L.e.; Zhang, X.; Gong, S.; Li, P. Carbon electrode materials for supercapacitors obtained by co-carbonization of coal-tar pitch and sawdust. J. Mater. Sci. 2017, 52, 760–769. [Google Scholar] [CrossRef]
- Qin, B.; Wang, Q.; Zhang, X.; Xie, X.; Cao, Q. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors. Electrochim. Acta 2018, 283, 655–663. [Google Scholar] [CrossRef]
- Ruiz, V.; Blanco, C.; Santamaría, R.; Ramos-Fernández, J.M.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, 47, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Xue, R. Preparation of activated mesocarbon microbeads with high mesopore content. Fuel Process. Technol. 2003, 84, 95–103. [Google Scholar] [CrossRef]
- Wahby, A.; Ramos-Fernández, J.M.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 2010, 3, 974–981. [Google Scholar] [CrossRef]
- Lei, C.; Amini, N.; Markoulidis, F.; Wilson, P.; Tennison, S.; Lekakou, C. Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J. Mater. Chem. A 2013, 1, 6037–6042. [Google Scholar] [CrossRef]
- Zang, J.; Tian, P.; Yang, G.; Jia, S.; Zhou, S.; Xu, H.; Wang, Y. A facile preparation of pomegranate-like porous carbon by carbonization and activation of phenolic resin prepared via hydrothermal synthesis in KOH solution for high performance supercapacitor electrodes. Adv. Powder Technol. 2019, 30, 2900–2907. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Feng, C.; Zhao, R.; Sun, Y.; Guan, T.; Han, B.; Tang, N.; Wang, J.; Li, K.; et al. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors. J. Power Sources 2017, 342, 363–370. [Google Scholar] [CrossRef]
- Endo, M.; Kim, Y.; Takeda, T.; Maeda, T.; Hayashi, T.; Koshiba, K.; Hara, H.; Dresselhaus, M. Poly (vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte. J. Electrochem. Soc. 2001, 148, A1135–A1140. [Google Scholar] [CrossRef]
- Endo, M.; Kim, Y.; Ishii, K.; Inoue, T.; Takeda, T.; Maeda, T.; Nomura, T.; Miyashita, N.; Dresselhaus, M. Structure and application of various Saran-based carbons to aqueous electric double-layer capacitors. J. Electrochem. Soc. 2002, 149, A1473–A1480. [Google Scholar] [CrossRef]
- Cai, J.; Lv, X.; Xing, Y.; Zhao, X. Carbon dioxide adsorption on poly (vinylidene chloride)-based carbons with ultrahigh microporosities prepared by facile carbonization. Mater. Lett. 2014, 114, 37–39. [Google Scholar] [CrossRef]
- Jagtoyen, M.; Derbyshire, F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 1998, 36, 1085–1097. [Google Scholar] [CrossRef]
- Jawad, A.H.; Sabar, S.; Ishak, M.A.M.; Wilson, L.D.; Ahmad Norrahma, S.S.; Talari, M.; Farhan, A.M. Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption. Chem. Eng. Commun. 2017, 204, 1143–1156. [Google Scholar] [CrossRef]
- Surip, S.N.; Abdulhameed, A.S.; Garba, Z.N.; Syed-Hassan, S.S.A.; Ismail, K.; Jawad, A.H. H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: Optimization of adsorption and mechanism study. Surf. Interfaces 2020, 21, 100641. [Google Scholar] [CrossRef]
- Kaykioğlu, G.; Güneş, E. Kinetic and equilibrium study of methylene blue adsorption using H2SO4− activated rice husk ash. Desalination Water Treat. 2016, 57, 7085–7097. [Google Scholar] [CrossRef]
- Da Silva Lacerda, V.; López-Sotelo, J.B.; Correa-Guimarães, A.; Hernández-Navarro, S.; Sánchez-Báscones, M.; Navas-Gracia, L.M.; Martín-Ramos, P.; Martín-Gil, J. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J. Environ. Manag. 2015, 155, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawande, P.R.; Kaware, J. Characterization and activation of coconut shell activated carbon research paper. Int. J. Eng. Sci. Invent. 2017, 6, 43–49. [Google Scholar]
- Tao, J.; Huo, P.; Fu, Z.; Zhang, J.; Yang, Z.; Zhang, D. Characterization and phenol adsorption performance of activated carbon prepared from tea residue by NaOH activation. Environ. Technol. 2019, 40, 171–181. [Google Scholar] [CrossRef]
- Yahya, M.A.; Ngah, C.Z.C.; Hashim, M.; Al-Qodah, Z. Preparation of activated carbon from desiccated coconut residue by chemical activation with NaOH. J. Mater. Sci. Res. 2016, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Caturla, F.; Molina-Sabio, M.; Rodriguez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon 1991, 29, 999–1007. [Google Scholar] [CrossRef]
- Tsai, W.; Chang, C.; Lin, M.; Chien, S.; Sun, H.; Hsieh, M. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 2001, 45, 51–58. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, K.; Li, S.; Li, M.; Li, J.; Ren, K. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 2018, 10, 2427–2437. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Jin, M.; Zhang, Y.; Niu, Y.B.; Gao, J.C.; Li, C.M. Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors. Adv. Energy Mater. 2018, 8, 1702545. [Google Scholar] [CrossRef]
- Yagmur, E.; Ozmak, M.; Aktas, Z. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel 2008, 87, 3278–3285. [Google Scholar] [CrossRef]
- Foo, K.; Hameed, B. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresour. Technol. 2012, 104, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-S.; Zheng, T.; Wang, P.; Guo, L. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 2010, 31, 233–238. [Google Scholar] [CrossRef]
- Koslow, E.E. Carbon or Activated Carbon Nanofibers. Google Patents 2007. [Google Scholar]
- Angelo, I.J.F. Apparatus for Continuously Carbonizing and Activating Carbonaceous Materials. Google Patents 1981. [Google Scholar]
- Mianowski, A.; Owczarek, M.; Marecka, A. Surface area of activated carbon determined by the iodine adsorption number. Energy Sources Part A 2007, 29, 839–850. [Google Scholar] [CrossRef]
- Teo, E.Y.L.; Muniandy, L.; Ng, E.-P.; Adam, F.; Mohamed, A.R.; Jose, R.; Chong, K.F. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 2016, 192, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T. Activated carbon with exceptionally high surface area and tailored nanoporosity obtained from natural anthracite and its use in supercapacitors. J. Power Sources 2019, 436, 226882. [Google Scholar] [CrossRef]
- Qing, Y.; Jiang, Y.; Lin, H.; Wang, L.; Liu, A.; Cao, Y.; Sheng, R.; Guo, Y.; Fan, C.; Zhang, S. Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J. Mater. Chem. A 2019, 7, 6021–6027. [Google Scholar] [CrossRef]
- Lu, Y.H.; Zhang, S.L.; Yin, J.M.; Bai, C.C.; Zhang, J.H.; Li, Y.X.; Yang, Y.; Ge, Z.; Zhang, M.; Wei, L.; et al. Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 2017, 124, 64–71. [Google Scholar] [CrossRef]
- SHIRAISHI, S.; KURIHARA, H.; OYA, A. Electric double layer capacitance of mesoporous activated carbon fiber. Electrochemistry 2001, 69, 440–443. [Google Scholar] [CrossRef]
- Pröbstle, H.; Saliger, R.; Fricke, J. Electrochemical Investigation of Carbon Aerogels and their Activated. Characterisation Porous Solids V 2000, 128, 371. [Google Scholar]
- Barbieri, O.; Hahn, M.; Herzog, A.; Kötz, R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43, 1303–1310. [Google Scholar] [CrossRef]
- Dolas, H.; Sahin, O.; Saka, C.; Demir, H. A new method on producing high surface area activated carbon: The effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell. Chem. Eng. J. 2011, 166, 191–197. [Google Scholar] [CrossRef]
- Talreja, N.; Jung, S.; Yen, L.T.H.; Kim, T. Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chem. Eng. J. 2020, 379, 122332. [Google Scholar] [CrossRef]
- Liu, X.; Mao, F.F.; Li, Z.M.; Xu, Z.H.; Shu, X.J.; Mi, J.P.; Zhou, Y.; Tao, D.J. Solidothermal synthesis of nitrogen-decorated, ordered mesoporous carbons with large surface areas for efficient selective capture and separation of SO2. Chem. Eng. J. 2022, 431, 134142. [Google Scholar] [CrossRef]
- Du, J.; Liu, L.; Yu, Y.F.; Zhang, Y.; Chen, A.B. Monomer Self-Deposition for Ordered Mesoporous Carbon for High-Performance Supercapacitors. Chemsuschem 2019, 12, 2409–2414. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Li, W.-Y.; Dong, X.-L.; Wang, Y.-G.; Wang, C.-X.; Xia, Y.-Y. A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. J. Mater. Chem. A 2013, 1, 8488–8496. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, J.; Miao, R.; Yao, Z.; Zhuang, X.; Feng, X. Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage. J. Mater. Chem. A 2016, 4, 2286–2292. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Wang, X.; Zhang, Y.; Liu, J.; Lu, Q.; Liu, M. Boron-doped ordered mesoporous carbons for the application of supercapacitors. Electrochim. Acta 2016, 207, 266–274. [Google Scholar] [CrossRef]
- Zeng, K.; Su, J.; Cao, X.; Zheng, X.; Li, X.; Tian, J.-H.; Jin, C.; Yang, R. B, N Co-Doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction. J. Alloy. Compd. 2020, 824, 153908. [Google Scholar] [CrossRef]
- Ragavan, R.; Pandurangan, A. Exploration on magnetic and electrochemical properties of nitrogen and phosphorus Co-doped ordered mesoporous carbon for supercapacitor applications. Micropor. Mesopor. Mat. 2022, 338, 111959. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Li, Z.W.; Tao, Y.J.; Zhou, J.H.; Zhang, H.Y. Hierarchical porous carbon materials produced from heavy bio-oil for high-performance supercapacitor electrodes. J. Energy Storage 2022, 47, 103624. [Google Scholar] [CrossRef]
- Yang, W.; Wang, P.; Tu, Z.Q.; Hou, L.Q.; Yan, L.; Jiang, B.; Zhang, C.X.; Huang, G.Y.; Yang, F.; Li, Y.F. Heteroatoms-doped hierarchical porous carbon with multi-scale structure derived from petroleum asphalt for high-performance supercapacitors. Carbon 2022, 187, 338–348. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, Y.M. Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers. Mat. Sci. Eng. A-Struct. 2005, 391, 121–123. [Google Scholar] [CrossRef]
- Xu, B.; Wu, F.; Chen, R.; Cao, G.; Chen, S.; Yang, Y. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J. Power Sources 2010, 195, 2118–2124. [Google Scholar] [CrossRef]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Heo, Y.-J.; Park, M.; Kang, W.-S.; Rhee, K.Y.; Park, S.-J. Preparation and characterization of carbon black/pitch-based carbon fiber paper composites for gas diffusion layers. Compos. Part B Eng. 2019, 159, 362–368. [Google Scholar] [CrossRef]
- Shimanoe, H.; Mashio, T.; Nakabayashi, K.; Inoue, T.; Hamaguchi, M.; Miyawaki, J.; Mochida, I.; Yoon, S.-H. Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber. Carbon 2020, 158, 922–929. [Google Scholar] [CrossRef]
- Vujković, M.; Matović, L.; Krstić, J.; Stojmenović, M.; Đukić, A.; Babić, B.; Mentus, S. Mechanically activated carbonized rayon fibers as an electrochemical supercapacitor in aqueous solutions. Electrochim. Acta 2017, 245, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-I.; Wang, C.-M.; Lu, K.-W.; Shih, W.-C. Evaluation of activated carbon fiber applied in supercapacitor electrodes. Fibers Polym. 2014, 15, 1708–1714. [Google Scholar] [CrossRef]
- Kostoglou, N.; Koczwara, C.; Prehal, C.; Terziyska, V.; Babic, B.; Matovic, B.; Constantinides, G.; Tampaxis, C.; Charalambopoulou, G.; Steriotis, T. Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy 2017, 40, 49–64. [Google Scholar] [CrossRef]
- Yang, J.-B.; Ling, L.-C.; Liu, L.; Kang, F.-Y.; Huang, Z.-H.; Wu, H. Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution. Carbon 2002, 40, 911–916. [Google Scholar] [CrossRef]
- Li, X.M.; Liu, S.Q.; Huang, Y.B.; Zheng, Y.W.; Harper, D.P.; Zheng, Z.F. Preparation and Foaming Mechanism of Pyrocarbon Foams Controlled by Activated Carbon as the Transplantation Core. ACS Sustain. Chem. Eng. 2018, 6, 3515–3524. [Google Scholar] [CrossRef]
- Yue, Z.R.; Vakili, A. Activated carbon-carbon composites made of pitch-based carbon fibers and phenolic resin for use of adsorbents. J. Mater. Sci. 2017, 52, 12913–12921. [Google Scholar] [CrossRef]
- Shen, L.; Wang, F.; Yang, H.; Meng, Q. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym. Test. 2011, 30, 442–448. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chapman, B.R.; Cheng, C.Y.; Ferry, W.M.; Kelly, M.B.; Lundmark, B.R.; Li, W. Polypropylene Based Fibers and Nonwovens. Google Patents 2011. [Google Scholar]
- Abdullah, M.; Cantwell, W. The impact resistance of polypropylene-based fibre–metal laminates. Compos. Sci. Technol. 2006, 66, 1682–1693. [Google Scholar] [CrossRef]
- Chen, J.J.; Xie, J.X.; Jia, C.Q.; Song, C.Y.; Hu, J.; Li, H.L. Economical preparation of high-performance activated carbon fiber papers as self-supporting supercapacitor electrodes. Chem. Eng. J. 2022, 450, 137938. [Google Scholar] [CrossRef]
- Luo, L.; Wang, S.R.; Zhou, Y.L.; Yan, W.; Gao, H.L.; Luo, L.C.; Deng, J.P.; Du, G.B.; Fan, M.Z.; Zhao, W.G. Microwave-assisted synthesis of hybrid supercapacitors consisting of Ni, Co-layered double hydroxide shell assembled around wood-derived activated carbon fiber core. Electrochim. Acta 2022, 412, 140148. [Google Scholar] [CrossRef]
- Lin, J.-H.; Ko, T.-H.; Lin, Y.-H.; Pan, C.-K. Various Treated Conditions to Prepare Porous Activated Carbon Fiber for Application in Supercapacitor Electrodes. Energy Fuels 2009, 23, 4668–4677. [Google Scholar] [CrossRef]
- Ni, G.; Qin, F.; Guo, Z.; Wang, J.; Shen, W. Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance. Electrochim. Acta 2020, 330, 135270. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1–18. [Google Scholar] [CrossRef]
- Mayer, S.T. The Aerocapacitor: An Electrochemical Double-Layer Energy-Storage Device. J. Electrochem. Soc. 1993, 140, 446. [Google Scholar] [CrossRef] [Green Version]
- Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids 1998, 225, 81–85. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Huang, Q.; Gamboa, S.; Sebastian, P. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 2006, 158, 784–788. [Google Scholar] [CrossRef]
- Liu, H.Y.; Xu, T.; Cai, C.Y.; Liu, K.; Liu, W.; Zhang, M.; Du, H.S.; Si, C.L.; Zhang, K. Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose-Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Adv. Funct. Mater. 2022, 32, 2113082. [Google Scholar] [CrossRef]
- Yu, M.; Li, J.; Wang, L. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 2017, 310, 300–306. [Google Scholar] [CrossRef]
- Liu, N.; Shen, J.; Liu, D. Activated high specific surface area carbon aerogels for EDLCs. Micropor. Mesopor. Mat. 2013, 167, 176–181. [Google Scholar] [CrossRef]
- Fang, B.; Binder, L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J. Power Sources 2006, 163, 616–622. [Google Scholar] [CrossRef]
- Liu, D.C.; Zhang, W.L.; Lin, H.B.; Li, Y.; Lu, H.Y.; Wang, Y. A green technology for the preparation of high capacitance rice husk-based activated carbon. J. Clean. Prod. 2016, 112, 1190–1198. [Google Scholar] [CrossRef]
- Shang, T.; Xu, Y.; Li, P.; Han, J.; Wu, Z.; Tao, Y.; Yang, Q.-H. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 2020, 70, 104531. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, B.E.; Liu, Y.J. Preparation of boron-doped mesoporous carbon with aromatic compounds as expanding agents. RSC Adv. 2018, 8, 17629–17634. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.G.; Liu, H.; Zeng, J.P.; Zhou, J.F.; Li, H.J.; Xia, H. Facile Synthesis of Nitrogen-Doped Microporous Carbon Spheres for High Performance Symmetric Supercapacitors. Nanoscale Res. Lett. 2018, 13, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.-X.; Li, X.-M.; Xie, L.-J.; Su, F.-Y.; Li, J.-P.; Sun, G.-H.; Gao, Y.-D.; Zhang, N.; Wei, Q.; Chen, C.-M. Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor. Energy Storage Mater. 2016, 3, 140–148. [Google Scholar] [CrossRef]
- Liu, F.Y.; Wang, Z.X.; Zhang, H.T.; Jin, L.; Chu, X.; Gu, B.N.; Huang, H.C.; Yang, W.Q. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 2019, 149, 105–116. [Google Scholar] [CrossRef]
- Li, M.; Xiao, H.; Zhang, T.; Li, Q.; Zhao, Y. Activated Carbon Fiber Derived from Sisal with Large Specific Surface Area for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 4716–4723. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, L.; Liu, Y.; Zhao, G.; Chen, J.Y.; Yu, G. Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 15205–15215. [Google Scholar] [CrossRef]
- Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6, 12120–12129. [Google Scholar] [CrossRef]
- Yang, J.J.; Li, H.L.; He, S.J.; Du, H.J.; Liu, K.M.; Zhang, C.M.; Jiang, S.H. Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers 2022, 14, 2521. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.L.; Duan, G.G.; Yang, H.Q.; Cheong, J.Y.; Lee, J.; Ahn, J.; Zhang, Q.; He, S.J.; Han, J.Q.; et al. Wood-Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors. Small 2021, 17, 2102532. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Zhang, H.; Tian, Z.; Zhang, Q.; Yang, F.; Yang, H.; He, S.; Jiang, S. Intertwined carbon networks derived from Polyimide/Cellulose composite as porous electrode for symmetrical supercapacitor. J. Colloid Interface Sci. 2022, 609, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.-L.; Jin, H.; Cao, L.; Yang, H.; Jiang, S.; He, S.; Li, S.; Liu, K.; Duan, G. Bimetallic salts template-assisted strategy towards the preparation of hierarchical porous polyimide-derived carbon electrode for supercapacitor. Diam. Relat. Mater. 2022, 128, 109283. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Duan, G.; Zhao, L.; Zhang, C.; Chen, L.; Zhang, Q.; Liu, K.; Wang, F. Pyrolysis of zinc salt-treated flax fiber: Hierarchically porous carbon electrode for supercapacitor. Diam. Relat. Mater. 2022, 129, 109339. [Google Scholar] [CrossRef]
- Aydin, H.; Kurtan, U.; Demir, M.; Karakus, S. Synthesis and Application of a Self-Standing Zirconia-Based Carbon Nanofiber in a Supercapacitor. Energy Fuels 2022, 36, 2212–2219. [Google Scholar] [CrossRef]
- Bera, S.; Miah, M.; Mondal, T.K.; Debnath, A.; Saha, S.K. Synthesis of new mixed metal oxide RuNi2O4 phase decorated on reduced graphene oxide for supercapacitor applications. Electrochim. Acta 2022, 424, 140666. [Google Scholar] [CrossRef]
- Vinodh, R.; Babu, R.S.; Atchudan, R.; Kim, H.J.; Yi, M.; Samyn, L.M.; de Barros, A.L.F. Fabrication of High-Performance Asymmetric Supercapacitor Consists of Nickel Oxide and Activated Carbon (NiO//AC). Catalysts 2022, 12, 375. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Kiaeerad, P.; Mazinani, S.; Bazargan, A.M.; Sharif, F. Bimetallic nickel-cobalt oxide nanoparticle/electrospun carbon nanofiber composites: Preparation and application for supercapacitor electrode. Ceram. Int. 2022, 48, 10015–10023. [Google Scholar] [CrossRef]
- Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S.S. Flexible and freestanding manganese/iron oxide carbon nanofibers for supercapacitor electrodes. Ceram. Int. 2022, 48, 18374–18383. [Google Scholar] [CrossRef]
- Joshi, B.; Samuel, E.; Kim, Y.; Kim, T.; El-Newehy, M.; Aldalbahi, A.; Yoon, S.S. Electrospun zinc-manganese bimetallic oxide carbon nanofibers as freestanding supercapacitor electrodes. Int. J. Energy Res. 2022. [Google Scholar] [CrossRef]
- Rudra, S.; Deka, N.; Nayak, A.K.; Pradhan, M.; Dutta, G.K. Facile hydrothermal synthesis of Au-Mn3O4 decorated graphene oxide nanocomposites for solid-state supercapacitor. J. Energy Storage 2022, 50, 104615. [Google Scholar] [CrossRef]
- Zhang, D.X.; Xiang, Q. Electrophoretic co-deposition of Bi2O3-multiwalled carbon nanotubes coating as supercapacitor electrode. J. Am. Ceram. Soc. 2022, 105, 5638–5648. [Google Scholar] [CrossRef]
- Pecenek, H.; Dokan, F.K.; Onses, M.S.; Yilmaz, E.; Sahmetlioglu, E. Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes. Mater. Res. Bull. 2022, 149, 111745. [Google Scholar] [CrossRef]
- Hong, X.D.; Deng, C.Y.; Wang, X.; Dong, W.; Liang, B. Carbon nanosheets/MnO2/NiCo2O4 ternary composite for supercapacitor electrodes. J. Energy Storage 2022, 53, 105086. [Google Scholar] [CrossRef]
- Shrivastav, V.; Sundriyal, S.; Tiwari, U.K.; Kim, K.H.; Deep, A. Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode. Energy 2021, 235, 121351. [Google Scholar] [CrossRef]
- Geioushy, R.A.; Attia, S.Y.; Mohamed, S.G.; Li, H.T.; Fouad, O.A. High-performance electrode materials for supercapacitor applications using Ni-catalyzed carbon nanostructures derived from biomass waste materials. J. Energy Storage 2022, 48, 104034. [Google Scholar] [CrossRef]
- Mohammadi, N.; Pourreza, K.; Adeh, N.B.; Omidvar, M. Defective mesoporous carbon/MnO2 nanocomposite as an advanced electrode material for supercapacitor application. J. Alloy. Compd. 2021, 883, 160874. [Google Scholar] [CrossRef]
- Mandal, M.; Subudhi, S.; Alam, I.; Subramanyam, B.V.R.S.; Patra, S.; Raiguru, J.; Das, S.; Mahanandia, P. Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications. Inorg. Chem. Commun. 2021, 123, 108332. [Google Scholar] [CrossRef]
- Shin, S.; Shin, M.W. Nickel metal-organic framework (Ni-MOF) derived NiO/C@CNF composite for the application of high performance self-standing supercapacitor electrode. Appl. Surf. Sci. 2021, 540, 148295. [Google Scholar] [CrossRef]
- Naushad, M.; Ahamad, T.; Ubaidullah, M.; Ahmed, J.; Ghafar, A.A.; Al-Sheetan, K.M.; Arunachalam, P. Nitrogen-doped carbon quantum dots (N-CQDs)/Co3O4 nanocomposite for high performance supercapacitor. J. King Saud Univ. Sci. 2021, 33, 101252. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.B.; Shang, X.H.; Xu, K.B.; Yang, J.M.; Huang, M.H.; Liu, J.Y. Structure-tunable Mn3O4-Fe3O4@C hybrids for high-performance supercapacitor. J. Colloid Interface Sci. 2021, 581, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Zhao, K.; Tang, Y.F.; Li, F.P.; Meng, Q.N. Forest-like carbon foam templated rGO/CNTs/MnO2 electrode for high-performance supercapacitor. Electrochim. Acta 2021, 375, 137960. [Google Scholar] [CrossRef]
- Yu, P.P.; Zhang, Z.M.; Zheng, L.X.; Teng, F.; Hu, L.F.; Fang, X.S. A Novel Sustainable Flour Derived Hierarchical Nitrogen-Doped Porous Carbon/Polyaniline Electrode for Advanced Asymmetric Supercapacitors. Adv. Energy Mater. 2016, 6, 1601111. [Google Scholar] [CrossRef]
- Shan, S.; Lin, L.; Huo, X.; Lin, L.; Zhang, W. Preparation of cyclodextrin polymer-functionalized polyaniline/porous carbon composites for use in high-performance supercapacitors. Mater. Lett. 2022, 324, 132771. [Google Scholar] [CrossRef]
- Han, G.Q.; Liu, Y.; Zhang, L.L.; Kan, E.J.; Zhang, S.P.; Tang, J.; Tang, W.H. MnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors. Sci. Rep. 2014, 4, 4824. [Google Scholar] [CrossRef] [Green Version]
- Ramaseshan, R.; Sundarrajan, S.; Jose, R.; Ramakrishna, S. Nanostructured ceramics by electrospinning. J. Appl. Phys. 2007, 102, 111101. [Google Scholar] [CrossRef]
- Tiwari, P.; Janas, D.; Chandra, R. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor applications. Carbon 2021, 177, 291–303. [Google Scholar] [CrossRef]
- Hu, C.L.; Miao, L.S.; Yang, Q.; Yu, X.Z.; Song, L.; Zheng, Y.Y.; Wang, C.C.; Li, L.; Zhu, L.W.; Cao, X.B.; et al. Self-assembly of CNTs on Ni foam for enhanced performance of NiCoO2@CNT@NF supercapacitor electrode. Chem. Eng. J. 2021, 410, 128317. [Google Scholar] [CrossRef]
- Guo, S.Q.; Li, H.C.; Zhang, X.; Nawaz, H.; Chen, S.; Zhang, X.M.; Xu, F. Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance. Carbon 2021, 174, 500–508. [Google Scholar] [CrossRef]
- Zhou, H.M.; Zhan, Y.B.; Guo, F.Q.; Du, S.L.; Tian, B.L.; Dong, Y.C.; Qian, L. Synthesis of biomass-derived carbon aerogel/MnOx composite as electrode material for high-performance supercapacitors. Electrochim. Acta 2021, 390, 138817. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Tan, W.K.; Kawamura, G.; Matsuda, A.; Kar, K.K. Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor. J. Energy Storage 2021, 40, 102724. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Liu, Q.; Li, S.R.; Wang, D.C.; Zheng, Z.F. Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chem. Eng. J. 2022, 447, 137562. [Google Scholar] [CrossRef]
- Cherusseri, J.; Kar, K.K. Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A 2016, 4, 9910–9922. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, N.; Lv, T.; Yao, Y.; Peng, H.; Shi, J.; Cao, S.; Chen, T. Ag-Doped PEDOT: PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 2018, 6, 941–947. [Google Scholar] [CrossRef]
- Yan, J.; Liu, T.; Liu, X.; Yan, Y.; Huang, Y. Metal-organic framework-based materials for flexible supercapacitor application. Coord. Chem. Rev. 2022, 452, 214300. [Google Scholar] [CrossRef]
- Li, X.Q.; Chang, L.; Zhao, S.L.; Hao, C.L.; Lu, C.G.; Zhu, Y.H.; Tang, Z.Y. Research on Carbon-Based Electrode Materials for Supercapacitors. Acta Phys.-Chim. Sin. 2017, 33, 130–148. [Google Scholar] [CrossRef]
- Han, X.; Xiao, G.; Wang, Y.; Chen, X.; Duan, G.; Wu, Y.; Gong, X.; Wang, H. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J. Mater. Chem. A 2020, 8, 23059–23095. [Google Scholar] [CrossRef]
- Wang, J.; Dong, S.Y.; Ding, B.; Wang, Y.; Hao, X.D.; Dou, H.; Xia, Y.Y.; Zhang, X.G. Pseudocapacitive materials for electrochemical capacitors: From rational synthesis to capacitance optimization. Natl. Sci. Rev. 2017, 4, 71–90. [Google Scholar] [CrossRef]
Material | Potential Window/V | Electrolyte | Specific Capacitance/F g−1 (Scan Rate or Current Density) | Retention/% (Cycles) | Ref. |
---|---|---|---|---|---|
Hierarchical porous carbon/KOH-activated wood sawdust | −1–0 | 6 M KOH | 303 (1 A g−1) | 99 (5000) | [52] |
Activated carbon fiber/liquefied wood | −1–0.9 | 1 M H2SO4 | 280 (0.5 A g−1) | 99.3 (2000) | [53] |
Heteroatoms (O, N)-doped porous carbon | −1–0 | 1 M H2SO4 | 223 (1 A g−1) | 93.6 (4000) | [56] |
Pomegranate-like porous carbon | −1–0 | 6 M KOH | 341.3 (0.1 A g−1) | 96.1 (5000) | [93] |
Rice husk (RH)-derived AC | 0–1 | 6 M KOH | 330 (0.5 A g−1) | 92 (2000) | [99] |
Walnut shell based activated carbon (ACWS) | 0–1 | 6 M KOH | 330 (0.1 A g−1) | 95 (10,000) | [133] |
Coal-tar pitch (CTP)/sawdust (SD) co-carbonization | −1–0 | 6 M KOH | 251 (0.1 A g−1) | 93 (7000) | [163] |
Nitrogen-doped ordered mesoporous carbon | −1–0.7 | 1 M H2SO4 | 264 (0.5 A g−1) | 86 (10,000) | [166] |
Boron-doped ordered mesoporous carbon (B-OMC) | 0–0.9 | 1 M H2SO4 | 290 (20 A g−1) | – | [167] |
Nitrogen-doped microporous carbon spheres (NMCSs) | −0.2–0.8 | 6 M KOH | 416 (0.2 A g−1) | 96.9 (10,000) | [168] |
Nitrogen-doped hierarchical carbon (NHPC) | 0–0.9 | 6 M KOH | 257 (0.5 A g−1) | 90.3 (10,000) | [169] |
O-N-S co-doped hierarchical porous carbons | −1–0 | 6 M KOH | 244.5 (0.2 A g−1) | 91.6 (10,000) | [170] |
Sisal-derived activated carbon fibers (SC) | −1–0 | 6 M KOH | 415 (0.5 A g−1) | 93 (10,000) | [171] |
Biobased nano porous active carbon fibers | 0–1 | 6 M KOH | 225 (0.5 A g−1) | 85.3 (10,000) | [172] |
Hierarchical porous carbon aerogels | −1–0 | 6 M KOH | 142.1 (0.5 A g−1) | 93.9 (5000) | [173] |
KOH-activated carbon aerogels | −1–0 | 6 M KOH | 152.6 (0.5 A g−1) | – | [174] |
Material | Potential Window/V | Electrolyte | Specific Capacitance/F g−1 (Scan Rate or Current Density) | Retention/% (Cycles) | Ref. |
---|---|---|---|---|---|
ZrO2 carbon nanofibers | 0–1 | 6 M KOH | 140 (1 A g−1) | 82.6 (10,000) | [175] |
RuNi2O4/rGO composites | 0–1 | 0.5 M Na2SO4 | 792 (1 A g−1) | 93 (10,000) | [176] |
NiO/activated carbon composites | 0–0.4 | 2 M KOH | 568.7 (0.5 A g−1) | 90.6 (5000) | [177] |
Ni0.25Co0.25oxide/carbon nanofibers | −1–0 | 6 M KOH | 431.2 (1 A g−1) | 94 (2000) | [178] |
MnO/Fe2O3/carbon nanofibers | 0–1 | 6 M KOH | 437 (1 A g−1) | 94 (10,000) | [179] |
ZnO/MnO/carbon nanofibers | 0–1.6 | 6 M KOH | 1080 (1 A g−1) | 96 (800) | [180] |
Au-Mn3O4/GO nanocomposites | −0.2–1 | 0.5 M H2SO4 | 475 (1 A g−1) | 94 (10,000) | [181] |
Bi2O3/MWCNT composites | −1.2–0.2 | 6 M KOH | 437 (1 A g−1) | 88.7 (3000) | [182] |
NiO/MnO2/MWCNT composites | 0–0.55 | 2 M KOH | 1320(1 A g−1) | 93.5 (3000) | [183] |
Carbon nanosheets/MnO2/NiCo2O4 composites | 0–1 | 1 M KOH | 1254 (1 A g−1) | 81.9 (5000) | [184] |
ZrO2/C nanocomposites | 0–1 | 1 M H2SO4 | 214 (1.5 A g−1) | 97 (2000) | [185] |
NiO/porous amorphous carbon nanostructure | 0–1.6 | 6 M KOH | 508 (1 A g−1) | 78 (3000) | [186] |
Defective mesoporous carbon/MnO2 nanocomposites | −0.8–0.8 | 1 M Na2SO4 | 292 (0.5 A g−1) | 79 (2000) | [187] |
Activated carbon/MWCNT/ZnFe2O4 composites | −0.1–0.6 | 3 M KOH | 609 (1 A g−1) | 91 (10,000) | [188] |
NiO/C@CNF composites | −0.1–0.5 | 3 M KOH | 742.2 (1 A g−1) | 88 (5000) | [189] |
N-doped carbon quantum dots/Co3O4 nanocomposites | −0.4–0.6 | 6 M KOH | 1867 (1 A g−1) | 96 (500) | [190] |
Mn3O4/Fe3O4@Carbon composites | −0.4–1.2 | 1 M NaCl | 178 (1 A g−1) | 95 (1000) | [191] |
rGO/CNTs/MnO2 composites/// | 0–1.8 | 1 M Na2SO4 | 332.5 (0.5 A g−1) | 89.2 (10,000) | [192] |
(HPC)/polyaniline (PANI) nanowire | 0–1.8 | 1 M H2SO4 | 1080 (1 A g−1) | 91.6 (5000) | [193] |
Cyclodextrin polymer-functionalized polyaniline (CDP)/porous carbon composites(PC) | −0.2–0.8 | 6 M KOH | 437 (0.1 A g−1) | 81 (5000) | [194] |
MnO2/Graphene Oxide/Polyaniline composites | 0–1 | 1 M Na2SO4 | 512 (0.25 A g−1) | 97 (5100) | [195] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials 2022, 12, 3708. https://doi.org/10.3390/nano12203708
Kumar N, Kim S-B, Lee S-Y, Park S-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials. 2022; 12(20):3708. https://doi.org/10.3390/nano12203708
Chicago/Turabian StyleKumar, Niraj, Su-Bin Kim, Seul-Yi Lee, and Soo-Jin Park. 2022. "Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives" Nanomaterials 12, no. 20: 3708. https://doi.org/10.3390/nano12203708