Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. TEM Characterization
2.3. Calculation of PXRD Diffraction Patterns
2.4. STEM Measurements Including the 4D-STEM/PNBD Method
2.4.1. SEM Microscope with Pixelated Detector
2.4.2. Principle of 4D-STEM/PNBD Method
3. Results
3.1. Results of 4D-STEM/PNBD Method
3.1.1. Au Nano-Islands
3.1.2. TbF3 Nanoparticles
3.1.3. NaYF4 Nanoparticles
3.2. STEMDIFF: Program Package for Convenient Processing of 4D-STEM/PNBD Data
3.3. Influence of Selected Parameters on the Quality of 4D-STEM/PNBD Results
3.3.1. Dataset size
3.3.2. Dataset Filtering
4. Discussion and Conclusions
4.1. Originality of 4D-STEM/PNBD Method
4.2. Current Limitations of the 4D-STEM/PNBD Method
4.3. Advantages and Future Perspective of the 4D-STEM/PNBD Method
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egerton, R.F. Physical Principles of Electron Microscopy. An Introduction to TEM, SEM, and AEM, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Holm, J.; Caplins, B.; Killgore, J. Obtaining diffraction patterns from annular dark-field STEM-in-SEM images: Towards a better understanding of image contrast. Ultramicroscopy 2020, 212, 112972. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, M.; Müller, E.; Klein, M.F.G.; Colsmann, A.; Lemmer, U.; Krzyzanek, V.; Reichelt, R.; Gerthsen, D. Low-energy electron scattering in carbon-based materials analyzed by scanning transmission electron microscopy and its application to sample thickness determination. J. Microsc. 2010, 243, 31–39. [Google Scholar] [CrossRef]
- Skoupy, R.; Nebesarova, J.; Slouf, M.; Krzyzanek, V. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy 2019, 202, 44–50. [Google Scholar] [CrossRef]
- Ferroni, M.; Signoroni, A.; Sanzogni, A.; Masini, L.; Migliori, A.; Ortolani, L.; Pezza, A.; Morandi, V. Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope. Sci. Rep. 2016, 6, 33354. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Muller, E.; Meffert, M.; Gerthsen, D. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope. Microsc. Microanal. 2018, 24, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.D.; Caplins, B.W. STEM in SEM: Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure Analysis; ASM International: Novelty, OH, USA, 2020. [Google Scholar]
- Faruqi, A.; McMullan, G. Direct imaging detectors for electron microscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 878, 180–190. [Google Scholar] [CrossRef]
- MacLaren, I.; MacGregor, T.A.; Allen, C.S.; Kirkland, A.I. Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 2020, 8, 110901. [Google Scholar] [CrossRef]
- Ganesh, K.; Kawasaki, M.; Zhou, J.; Ferreira, P. D-STEM: A Parallel Electron Diffraction Technique Applied to Nanomaterials. Microsc. Microanal. 2010, 16, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Ophus, C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019, 25, 563–582. [Google Scholar] [CrossRef] [PubMed]
- Bammes, B.; Ramachandra, R.; Mackey, M.R.; Bilhorn, R.; Ellisman, M. Multi-Color Electron Microscopy of Cellular Ultrastructure Using 4D-STEM. Microsc. Microanal. 2019, 25, 1060–1061. [Google Scholar] [CrossRef]
- Fang, S.; Wen, Y.; Allen, C.S.; Ophus, C.; Han, G.G.D.; Kirkland, A.I.; Kaxiras, E.; Warner, J.H. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, F.; Gao, S.; Zhang, M.; Kirkland, A.I. Electron Ptychographic Diffractive Imaging of Boron Atoms in LaB6 Crystals. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Mu, X.; Mazilkin, A.; Sprau, C.; Colsmann, A.; Kübel, C. Mapping structure and morphology of amorphous organic thin films by 4D-STEM pair distribution function analysis. Microscopy 2019, 68, 301–309. [Google Scholar] [CrossRef]
- Panova, O.; Ophus, C.; Takacs, C.J.; Bustillo, K.C.; Balhorn, L.; Salleo, A.; Balsara, N.; Minor, A.M. Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nat. Mater. 2019, 18, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Vystavěl, T.; Tůma, L.; Stejskal, P.; Unčovský, M.; Skalický, J.; Young, R. Expanding Capabilities of Low-kV STEM Imaging and Transmission Electron Diffraction in FIB/SEM Systems. Microsc. Microanal. 2017, 23, 554–555. [Google Scholar] [CrossRef]
- Caplins, B.W.; Holm, J.D.; Keller, R.R. Orientation mapping of graphene in a scanning electron microscope. Carbon 2019, 149, 400–406. [Google Scholar] [CrossRef]
- Caplins, B.W.; Holm, J.D.; White, R.M.; Keller, R.R. Orientation mapping of graphene using 4D STEM-in-SEM. Ultramicroscopy 2020, 219, 113137. [Google Scholar] [CrossRef] [PubMed]
- Humphry, M.; Kraus, B.; Hurst, A.; Maiden, A.; Rodenburg, J. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 2012, 3, 730. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, P.; Denninger, P.; Dolle, C.; Spiecker, E. Low energy nano diffraction (LEND)—A versatile diffraction technique in SEM. Ultramicroscopy 2020, 213, 112956. [Google Scholar] [CrossRef]
- Lábár, J.L. Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy 2005, 103, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Šlouf, M.; Vacková, T.; Zhigunov, A.; Sikora, A.; Piorkowska, E.; Taťana, V.; Alexander, Z.; Antonin, S.; Ewa, P. Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. J. Macromol. Sci. Part B 2016, 55, 393–410. [Google Scholar] [CrossRef]
- Shapoval, O.; Oleksa, V.; Šlouf, M.; Lobaz, V.; Trhlíková, O.; Filipová, M.; Janoušková, O.; Engstová, H.; Pankrác, J.; Modrý, A.; et al. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials 2021, 11, 230. [Google Scholar] [CrossRef]
- Kostiv, U.; Janouskova, O.; Slouf, M.; Kotov, N.; Engstova, H.; Smolkova, K.; Jezek, P.; Horak, D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale 2015, 7, 18096–18104. [Google Scholar] [CrossRef]
- Glasser, L. Crystallographic Information Resources. J. Chem. Educ. 2016, 93, 542–549. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Granja, C.; Jakubek, J.; Polansky, S.; Zach, V.; Krist, P.; Chvatil, D.; Stursa, J.; Sommer, M.; Ploc, O.; Kodaira, S.; et al. Resolving power of pixel detector Timepix for wide-range electron, proton and ion detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 908, 60–71. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Kukleva, E.; Suchánková, P.; Štamberg, K.; Vlk, M.; Šlouf, M.; Kozempel, J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019, 9, 21989–21995. [Google Scholar] [CrossRef]
- Andrews, K.W.; Dyson, D.J.; Keown, S.R. Interpretation of Electron Diffraction Patterns; Plenum Press: New York, NY, USA, 1967. [Google Scholar]
- Fultz, B.; Howe, J.M. Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 353–357. [Google Scholar]
- Sparavigna, A.C. Entropy in Image Analysis. Entropy 2019, 21, 502. [Google Scholar] [CrossRef]
- Jain, C.; Chugh, A.; Yadav, S. Image Deblurring Using Blind Deconvolution; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2019. [Google Scholar]
Dataset ID | Step 1 (nm) | Scanning Matrix | HFW 2 [µm] | WD 3 [mm] | No. of Locations | Total no. of Files | Duration [h:m:s] 4 |
---|---|---|---|---|---|---|---|
Au small | 20 | 50 × 40 | 5 | 5.4 | 1 | 2000 | 0:05:30 |
Au big | 20 | 200 × 200 | 5 | 5.4 | 1 | 40,000 | 1:52:00 |
TbF3 | 50 | 100 × 80 | 5 | 4.6 | 1 | 8000 | 0:22:00 |
NaYF4 | 200 | 50 × 40 | 10 | 3.0 | 10 | 20,000 | 0:55:00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slouf, M.; Skoupy, R.; Pavlova, E.; Krzyzanek, V. Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials 2021, 11, 962. https://doi.org/10.3390/nano11040962
Slouf M, Skoupy R, Pavlova E, Krzyzanek V. Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials. 2021; 11(4):962. https://doi.org/10.3390/nano11040962
Chicago/Turabian StyleSlouf, Miroslav, Radim Skoupy, Ewa Pavlova, and Vladislav Krzyzanek. 2021. "Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure" Nanomaterials 11, no. 4: 962. https://doi.org/10.3390/nano11040962
APA StyleSlouf, M., Skoupy, R., Pavlova, E., & Krzyzanek, V. (2021). Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials, 11(4), 962. https://doi.org/10.3390/nano11040962