Next Article in Journal
Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review
Next Article in Special Issue
Synthesis and Characterization of NiCoPt/CNFs Nanoparticles as an Effective Electrocatalyst for Energy Applications
Previous Article in Journal
Crystallization in Zirconia Film Nano-Layered with Silica
Article

Recycling Rusty Iron with Natural Zeolite Heulandite to Create a Unique Nanocatalyst for Green Hydrogen Production

1
Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
2
Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
3
Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
4
Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
*
Author to whom correspondence should be addressed.
Academic Editors: Domenica Tonelli and Isacco Gualandi
Nanomaterials 2021, 11(12), 3445; https://doi.org/10.3390/nano11123445
Received: 6 October 2021 / Revised: 13 November 2021 / Accepted: 16 November 2021 / Published: 20 December 2021
(This article belongs to the Special Issue Nanomaterials for Electrochemical Applications)
Corrosion-induced iron rust causes severe danger, pollution, and economic problems. In this work, nanopowders of Fe2O3 and Fe2O3/zeolite are synthesized for the first time using rusted iron waste and natural zeolite heulandite by chemical precipitation. The chemical composition, nanomorphologies, structural parameters, and optical behaviors are investigated using different techniques. The Fe2O3/zeolite nanocomposite showed smaller sizes and greater light absorption capability in visible light than Fe2O3 nanopowder. The XRD pattern shows crystalline hematite (α-Fe2O3) with a rhombohedral structure. The crystallite sizes for the plane (104) of the Fe2O3 and Fe2O3/zeolite are 64.84 and 56.53 nm, respectively. The Fe2O3 and Fe2O3/zeolite have indirect bandgap values of 1.87 and 1.91 eV and direct bandgap values of 2.04 and 2.07 eV, respectively. Fe2O3 and Fe2O3/zeolite nanophotocatalysts are used for solar photoelectrochemical (PEC) hydrogen production. The Fe2O3/zeolite exhibits a PEC catalytic hydrogen production rate of 154.45 mmol/g.h @ 1 V in 0.9 M KOH solution, which is the highest value yet for Fe2O3-based photocatalysts. The photocurrent density of Fe2O3/zeolite is almost two times that of Fe2O3 catalyst, and the IPCE (incident photon-to-current conversion efficiency) reached ~27.34%@307 nm and 1 V. The electrochemical surface area (ECSA) values for Fe2O3 and Fe2O3/zeolite photocatalysts were 7.414 and 21.236 m2/g, respectively. The rate of hydrogen production for Fe2O3/zeolite was 154.44 mmol h−1/g. This nanophotocatalyst has a very low PEC corrosion rate of 7.6 pm/year; it can retain ~97% of its initial performance. Therefore, the present research can be applied industrially as a cost-effective technique to address two issues at once by producing solar hydrogen fuel and recycling the rusted iron wires. View Full-Text
Keywords: rusted iron; Fe2O3/zeolite nanocomposite; water splitting; hydrogen production; photocatalyst rusted iron; Fe2O3/zeolite nanocomposite; water splitting; hydrogen production; photocatalyst
Show Figures

Figure 1

MDPI and ACS Style

Shaban, M.; BinSabt, M.; Ahmed, A.M.; Mohamed, F. Recycling Rusty Iron with Natural Zeolite Heulandite to Create a Unique Nanocatalyst for Green Hydrogen Production. Nanomaterials 2021, 11, 3445. https://doi.org/10.3390/nano11123445

AMA Style

Shaban M, BinSabt M, Ahmed AM, Mohamed F. Recycling Rusty Iron with Natural Zeolite Heulandite to Create a Unique Nanocatalyst for Green Hydrogen Production. Nanomaterials. 2021; 11(12):3445. https://doi.org/10.3390/nano11123445

Chicago/Turabian Style

Shaban, Mohamed, Mohammad BinSabt, Ashour M. Ahmed, and Fatma Mohamed. 2021. "Recycling Rusty Iron with Natural Zeolite Heulandite to Create a Unique Nanocatalyst for Green Hydrogen Production" Nanomaterials 11, no. 12: 3445. https://doi.org/10.3390/nano11123445

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop