Synthesis of Copper and Copper Oxide Nanomaterials by Pulsed Electric Field in Water with Various Electrical Conductivities
Abstract
1. Introduction
2. Experimental Setup
3. Results
3.1. Material Synthesis
3.2. Material Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, X.; Liu, Q.; Yao, S.; Jiang, G. Recent progress in the application of nanomaterials in the analysis of emerging chemical contaminants. Anal. Methods 2017, 9, 2768–2783. [Google Scholar] [CrossRef]
- Xue, X.Y.; Cheng, R.; Shi, L.; Ma, Z.; Zheng, X. Nanomaterials for water pollution monitoring and remediation. Environ. Chem. Lett. 2017, 15, 23–27. [Google Scholar] [CrossRef]
- Schulz, C.; Dreier, T.; Fikri, M.; Wiggers, H. Gas-phase synthesis of functional nanomaterials: Challenges to kinetics, diagnostics, and process development. Proc. Combust. Inst. 2019, 37, 83–108. [Google Scholar] [CrossRef]
- Rajasekhar, C.; Kanchi, S. Green Nanomaterials for Clean Environment. In Handbook of Ecomaterials; Torres-Martinez, L.M., Kharissova, O.V., Kharisov, B.I., Eds.; Springer: Berlin, Germany, 2018; pp. 1–18. [Google Scholar]
- Yadav, T.P.; Yadav, R.M.; Singh, D.P. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48. [Google Scholar] [CrossRef]
- Li, Y.; Yan, Q.; Koshizaki, N. Unconventional lithography for patterned nanomaterials. Nanotechnology 2017, 28, 500201. [Google Scholar] [CrossRef]
- Mishra, P.K.; Ekielski, A. The self-assembly of lignin and its application in nanoparticle synthesis: A short review. Nanomaterials 2019, 9, 243. [Google Scholar] [CrossRef]
- Eswar, N.K.R.; Singh, S.A.; Heo, J. Atomic layer deposited photocatalysts: Comprehensive review on viable fabrication routes and reactor design approaches for photo-mediated redox reactions. J. Mater. Chem. A 2019, 7, 17703–17734. [Google Scholar] [CrossRef]
- Mariotti, D.; Sankaran, R.M. Microplasmas for nanomaterials synthesis. J. Phys. D Appl. Phys. 2010, 43, 323001. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Kaushik, N.; Linh, N.N.; Ghimire, B.; Pengkit, A.; Sornsakdanuphap, J.; Lee, S.J.; Choi, E.H. Plasma and nanomaterials: Fabrication and biomedical applications. Nanomaterials 2019, 9, 98. [Google Scholar] [CrossRef]
- Manawi, Y.; Samara, A.; Al-Ansari, T.; Atieh, M. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 2018, 11, 822. [Google Scholar] [CrossRef]
- Saito, N.; Bratescu, M.A.; Hashimi, K. Solution plasma: A new reaction field for nanomaterials synthesis. Jpn. J. Appl. Phys. 2017, 57, 0102A4. [Google Scholar] [CrossRef]
- Sapkota, D.; Li, Y.; Musaev, O.R.; Wrobel, J.M.; Kruger, M.B. Effect of electric fields on tin nanoparticles prepared by laser ablation in water. J. Laser Appl. 2017, 29, 1. [Google Scholar] [CrossRef]
- Belmonte, T.; Hamdan, A.; Kosior, F.; Noël, C.; Henrion, G. Interaction of discharges with electrode surfaces in dielectric liquids: Application to nanoparticle synthesis. J. Phys. D Appl. Phys. 2014, 47, 224016. [Google Scholar] [CrossRef]
- Hamdan, A.; Cha, M.S. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: N-heptane and water. J. Phys. D Appl. Phys. 2018, 51, 244003. [Google Scholar] [CrossRef]
- Hamdan, A.; Abdul Halim, R.; Anjum, D.; Cha, M.S. Synthesis of SiOC: H nanoparticles by electrical discharge in hexamethyldisilazane and water. Plasma Process. Polym. 2017, 14, 1700089. [Google Scholar] [CrossRef]
- Richmonds, C.; Sankaran, R.M. Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 2008, 93, 131501. [Google Scholar] [CrossRef]
- Mariotti, D.; Patel, J.; Švrček, V.; Maguire, P. Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Process. Polym. 2012, 9, 1074–1085. [Google Scholar] [CrossRef]
- Hamdan, A.; Noël, C.; Ghanbaja, J.; Belmonte, T. Comparison of aluminium nanostructures created by discharges in various dielectric liquids. Plasma Chem. Plasma Process. 2014, 34, 1101–1114. [Google Scholar] [CrossRef]
- Hamdan, A.; Noel, C.; Ghanbaja, J.; Migot-Choux, S.; Belmonte, T. Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Mater. Chem. Phys. 2013, 142, 199–206. [Google Scholar] [CrossRef]
- Hamdan, A.; Kabbara, H.; Noël, C.; Ghanbaja, J.; Redjaimia, A.; Belmonte, T. Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology 2018, 40, 152–159. [Google Scholar] [CrossRef]
- Glad, X.; Profili, J.; Cha, M.S.; Hamdan, A. Synthesis of copper and copper oxide nanomaterials by electrical discharges in water with various electrical conductivities. J. Appl. Phys. 2020, 127, 023302. [Google Scholar] [CrossRef]
- Atten, P. Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 1–17. [Google Scholar] [CrossRef]
- LaGrow, A.P.; Ward, M.R.; Lloyd, D.C.; Gai, P.L.; Boyes, E.D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 2017, 139, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Altaweel, A. Synthèse de Nanostructures d’Oxyde de Cuivre par Micro-Post-Décharge Micro-Ondes à Pression Atmosphérique. Ph.D Thesis, Université de Lorraine, Nancy, France, 2018. [Google Scholar]
- Nakamura, R.; Tokozakura, D.; Nakajima, H.; Lee, J.G.; Mori, H. Hollow oxide formation by oxidation of Al and Cu nanoparticles. J. Appl. Phys. 2007, 101, 074303. [Google Scholar] [CrossRef]
- Singh, D.P.; Neti, N.R.; Sinha, A.S.K.; Srivastava, O.N. Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper. J. Phys. Chem. C 2007, 111, 1638–1645. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, B.; Park, D.W. Anodizing Behavior of Copper by Plasma Electrolysis in Deionized Water as a Sole Electrolyte. J. Electrochem. Soc. 2019, 166, C3200–C3206. [Google Scholar] [CrossRef]
- El Warraky, A.; El Shayeb, H.A.; Sherif, E.M. Pitting corrosion of copper in chloride solutions. Anti-Corros. Methods Mater. 2004, 51, 52–61. [Google Scholar] [CrossRef]
- Cabrera, N.F.M.N.; Mott, N.F. Theory of the oxidation of metals. Rep. Prog. Phys. 1949, 12, 163. [Google Scholar] [CrossRef]
- Hung, L.I.; Tsung, C.K.; Huang, W.; Yang, P. Room-Temperature Formation of Hollow Cu2O Nanoparticles. Adv. Mater. 2010, 22, 1910–1914. [Google Scholar] [CrossRef]
Case | 1 | 2 | 3 | 4 |
---|---|---|---|---|
σ0 (µS/cm) | 2 | 8 | 32 | 64 |
[HCl] (10−7 M) | 0 | 1 | 4 | 8 |
σ0 (µS/cm) | Products | |
---|---|---|
With Electric Field | With Discharges [22] | |
2 | Nanowires; Cu nanoparticles | unordered micrometric agglomerates of Cu/Cu2O; Cu dendrites |
8 | Nanowires; Cu/Cu2O nanoparticles | |
32 | Nanowires; hollow Cu2O nanoparticles | unordered micrometric agglomerates of Cu/Cu2O; Cu2O nanoflakes |
64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdan, A.; Glad, X.; Cha, M.S. Synthesis of Copper and Copper Oxide Nanomaterials by Pulsed Electric Field in Water with Various Electrical Conductivities. Nanomaterials 2020, 10, 1347. https://doi.org/10.3390/nano10071347
Hamdan A, Glad X, Cha MS. Synthesis of Copper and Copper Oxide Nanomaterials by Pulsed Electric Field in Water with Various Electrical Conductivities. Nanomaterials. 2020; 10(7):1347. https://doi.org/10.3390/nano10071347
Chicago/Turabian StyleHamdan, Ahmad, Xavier Glad, and Min Suk Cha. 2020. "Synthesis of Copper and Copper Oxide Nanomaterials by Pulsed Electric Field in Water with Various Electrical Conductivities" Nanomaterials 10, no. 7: 1347. https://doi.org/10.3390/nano10071347
APA StyleHamdan, A., Glad, X., & Cha, M. S. (2020). Synthesis of Copper and Copper Oxide Nanomaterials by Pulsed Electric Field in Water with Various Electrical Conductivities. Nanomaterials, 10(7), 1347. https://doi.org/10.3390/nano10071347