Next Article in Journal
Three-Dimensional Printed Polylactic Acid (PLA) Surgical Retractors with Sonochemically Immobilized Silver Nanoparticles: The Next Generation of Low-Cost Antimicrobial Surgery Equipment
Previous Article in Journal
Detection of Human p53 In-Vitro Expressed in a Transcription-Translation Cell-Free System by a Novel Conjugate Based on Cadmium Sulphide Nanoparticles
Open AccessArticle

CeO2-Supported Pt Catalysts Derived from MOFs by Two Pyrolysis Strategies to Improve the Oxygen Activation Ability

1
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2
Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
3
National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
*
Author to whom correspondence should be addressed.
Nanomaterials 2020, 10(5), 983; https://doi.org/10.3390/nano10050983
Received: 21 April 2020 / Revised: 16 May 2020 / Accepted: 16 May 2020 / Published: 21 May 2020
(This article belongs to the Section Energy and Catalysis)
Functional metal organic framework (MOF) derivatives have attracted tremendous attention as promising catalysts for various reactions. The thermal decomposition strategies have a vital effect on the structures and physicochemical properties of functional MOF derivatives. Nevertheless, what effect does the pyrolysis strategy have on MOF derivatives need further study. In this work, one-step (under dry air) and two-step (first under N2 and then dry air) pyrolysis are chosen to prepare the functional ceria-based MOF derivatives with novel hierarchical pore structure. In comparison with the derivatives prepared by one-step pyrolysis, the two-step pyrolysis composites exhibit better catalytic activity for toluene oxidation due to the higher contents of surface absorbed oxygen species and surface oxygen vacancies. The reusability and durability test demonstrates perfect stability of such functional MOF derivatives. The in-situ UV Raman reveals that two-step strategy is favorable for enhancing the gaseous oxygen activation ability of the functional MOF derivatives. Those findings may instruct the synthesis of functional MOF derivatives via different pyrolysis strategies as well as afford a further understanding of the crucial role of oxygen vacancies. View Full-Text
Keywords: metal organic frameworks; functional derivatives; pyrolysis strategies; toluene oxidation; oxygen activation abilities metal organic frameworks; functional derivatives; pyrolysis strategies; toluene oxidation; oxygen activation abilities
Show Figures

Graphical abstract

MDPI and ACS Style

Zhu, X.; He, H.; Li, Y.; Wu, H.; Fu, M.; Ye, D.; Wu, J.; Huang, H.; Hu, Y.; Niu, X. CeO2-Supported Pt Catalysts Derived from MOFs by Two Pyrolysis Strategies to Improve the Oxygen Activation Ability. Nanomaterials 2020, 10, 983.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop