Next Article in Journal
Influence of Thickness and Sputtering Pressure on Electrical Resistivity and Elastic Wave Propagation in Oriented Columnar Tungsten Thin Films
Previous Article in Journal
Enhanced Mechanical and Thermal Properties of Stereolithography 3D Printed Structures by the Effects of Incorporated Controllably Annealed Anatase TiO2 Nanoparticles
Open AccessArticle

Hybrid ZnO Electron Transport Layer by Down Conversion Complexes for Dual Improvements of Photovoltaic and Stable Performances in Polymer Solar Cells

1
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, Qingdao 266071, China
2
Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Nanomaterials 2020, 10(1), 80; https://doi.org/10.3390/nano10010080
Received: 28 November 2019 / Revised: 9 December 2019 / Accepted: 25 December 2019 / Published: 1 January 2020
Polymer solar cells (PSCs) have shown excellent photovoltaic performance, however, extending the spectral response range to the ultraviolet (UV) region and enhancing the UV light stability remain two challenges to overcome in the development of PSCs. Lanthanide down-conversion materials can absorb the UV light and re-emit it at the visible region that matches well with the absorption of the active layer material PTB7-Th (poly[[2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbony]thieno[3,4-b]thiophenediyl]]) and PBDB-T-2F, thus helping to enhance the photovoltaic performance and UV light stability of PSCs. In this research, a down-conversion material Eu(TTA)3phen (ETP) is introduced into the cathode transport layer (ZnO) in PSCs to manipulate its nanostructure morphology for its application in hyperfine structure of PSCs. The device based on the ZnO/ETP electron transport layer can obtain power conversion efficiencies (PCEs) of 9.22% (PTB7-Th–PC71BM ([6,6]-phenylC71-butyric acid methyl ester) device) and 13.12% (PBDB-T-2F–IT-4F device), respectively. Besides, in the research on PTB7-Th-PC71BM device, the stability of the device based on ZnO/ETP layer is prolonged by 70% compared with the ZnO device. The results suggest that the ZnO/ETP layer plays the role of enhanced photovoltaic performance and prolonged device stability, as well as reducing photo-loss and UV degradation for PSCs. View Full-Text
Keywords: down-conversion materials; polymer solar cells; enhance light absorption; enhance UV stability; high photovoltaic performances down-conversion materials; polymer solar cells; enhance light absorption; enhance UV stability; high photovoltaic performances
Show Figures

Figure 1

MDPI and ACS Style

Bu, F.; Shen, W.; Zhang, X.; Wang, Y.; Belfiore, L.A.; Tang, J. Hybrid ZnO Electron Transport Layer by Down Conversion Complexes for Dual Improvements of Photovoltaic and Stable Performances in Polymer Solar Cells. Nanomaterials 2020, 10, 80.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop