Inhibition of Demineralization of Dentin by Fluoride-Containing Hydrogel Desensitizers: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Automatic pH Cycling System
2.3. Mineral Loss Analysis
2.4. Fluoride Uptake Analyses by PIGE and PIXE Techniques
2.5. Estimation of Fluorine Uptake from Materials
3. Results
3.1. Analysis of Fluorine Uptake by the In-Air µPIXE/PIGE Method
3.2. Examination of the Amount of Demineralization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.L.; Marcenes, W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Lu, Y.; Aida, J.; Tanji, F.; Tsuji, I. Association between number of remaining teeth and healthy aging in japanese older people: The ohsaki cohort 2006 study. Geriatr. Gerontol. Int. 2022, 22, 68–74. [Google Scholar] [CrossRef]
- Petersson, L.G. The role of fluoride in the preventive management of dentin hypersensitivity and root caries. Clin. Oral. Investig. 2013, 17 (Suppl. 1), S63–S71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshima, M.; Hamba, H.; Sadr, A.; Nikaido, T.; Tagami, J. Effect of polymer-based desensitizer with sodium fluoride on prevention of root dentin demineralization. Am. J. Dent. 2015, 28, 123–127. [Google Scholar]
- Matsuda, Y.; Okuyama, O.; Yamamoto, H.; Komatsu, H.; Koka, M.; Sato, T.; Hashimoto, N.; Ooki, S.; Kawamoto, C.; Sano, H. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic ph cycling. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2015, 348, 156–159. [Google Scholar] [CrossRef]
- Funato, Y.; Matsuda, Y.; Okuyama, K.; Yamamoto, H.; Komatsu, H.; Sano, H. A new technique for analyzing trace element uptake by human enamel. Dent. Mater. J. 2015, 34, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Aulestia, F.J.; Groeling, J.; Bomfim, G.H.S.; Costiniti, V.; Manikandan, V.; Chaloemtoem, A.; Concepcion, A.R.; Li, Y.; Wagner, L.E., 2nd; Idaghdour, Y.; et al. Fluoride exposure alters ca(2+) signaling and mitochondrial function in enamel cells. Sci. Signal 2020, 13, eaay0086. [Google Scholar] [CrossRef]
- Meyer-Lueckel, H.; Grundmann, E.; Stang, A. Effects of fluoride tablets on caries and fluorosis occurrence among 6- to 9-year olds using fluoridated salt. Community Dent. Oral. Epidemiol. 2010, 38, 315–323. [Google Scholar] [CrossRef]
- Hafiz, Z.; Allam, R.; Almazyad, B.; Bedaiwi, A.A.; Alotaibi, A.; Almubrad, A. Effectiveness of silver diamine fluoride in arresting caries in primary and early mixed dentition: A systematic review. Children 2022, 9, 1289. [Google Scholar] [CrossRef]
- Qeli, E.; Toti, Ç.; Odorici, A.; Blasi, E.; Tragaj, E.; Tepedino, M.; Masedu, F.; Kaçani, G.; Hysi, D.; Meto, A.; et al. Effectiveness of two different fluoride-based agents in the treatment of dentin hypersensitivity: A prospective clinical trial. Materials 2022, 15, 1266. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Komatsu, H.; Murata, Y.; Tanaka, T.; Sano, H. A newly designed automatic ph-cycling system to simulate daily ph fluctuations. Dent. Mater. J. 2006, 25, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, H.; Yamamoto, H.; Nomachi, M.; Yasuda, K.; Matsuda, Y.; Kinugawa, M.; Kijimura, T.; Sano, H.; Satou, T.; Oikawa, S.; et al. Fluorine uptake into human enamel around fluoride-containing dental materials during cariogenic ph cycling. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2009, 267, 2136–2139. [Google Scholar] [CrossRef]
- Komatsu, H.; Yamamoto, H.; Matsuda, Y.; Kijimura, T.; Kinugawa, M.; Okuyama, K.; Nomachi, M.; Yasuda, K.; Satoh, T.; Oikawa, S. Fluorine analysis of human enamel around fluoride-containing materials under different ph-cycling by μ-pige/pixe system. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2011, 269, 2274–2277. [Google Scholar] [CrossRef]
- Naito, K.; Kuwahara, Y.; Yamamoto, H.; Matsuda, Y.; Okuyama, K.; Ishimoto, T.; Nakano, T.; Yamashita, H.; Hayashi, M. Improvement of acid resistance of zn-doped dentin by newly generated chemical bonds. Mater. Des. 2022, 215, 110412. [Google Scholar] [CrossRef]
- Okuyama, K.; Matsuda, Y.; Yamamoto, H.; Sakurai, M.; Naito, K.; Shintani, K.; Saito, T.; Hayashi, M.; Tamaki, Y. Distribution of elements in teeth and inhibition of demineralization by titanium fluoride: Effects of concentration and ph in a titanium fluoride solution. Dent. Mater. J. 2021, 40, 736–742. [Google Scholar] [CrossRef]
- Almqvist, H.; Lagerlof, F. Influence of constant fluoride levels in solution on root hard tissue de- and remineralization measured by 125i absorptiometry. Caries Res. 1993, 27, 100–105. [Google Scholar] [CrossRef]
- Matsuda, Y.; Murata, Y.; Tanaka, T.; Komatsu, H.; Sano, H. Development of new software as a convenient analysis method for dental microradiography. Dent. Mater. J. 2007, 26, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Carey, C.M.; Brown, W. Dentin erosion: Method validation and efficacy of fluoride protection. Dent. J. 2017, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Li, B.; Zhou, X.; Ge, Y.; Wang, S.; Li, M.; Ren, B.; Wang, H.; Zhang, K.; Xu, H.H.K.; et al. Anti-caries effects of dental adhesives containing quaternary ammonium methacrylates with different chain lengths. Materials 2017, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Kamiya, T.; Oikawa, M.; Sato, T.; Tanaka, A.; Ishii, K. Jaeri takasaki in-air micro-pixe system for various applications. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2002, 190, 271–275. [Google Scholar] [CrossRef]
- Mitchell, J.C.; Musanje, L.; Ferracane, J.L. Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent. Mater. 2011, 27, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Baik, A.; Alamoudi, N.; El-Housseiny, A.; Altuwirqi, A. Fluoride varnishes for preventing occlusal dental caries: A review. Dent. J. 2021, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Göstemeyer, G.; Woike, H.; Paris, S.; Schwendicke, F.; Schlafer, S. Root caries preventive effect of varnishes containing fluoride or fluoride + chlorhexidine/cetylpyridinium chloride in vitro. Microorganisms 2021, 9, 737. [Google Scholar] [CrossRef]
- Hong, L.; Watkins, C.A.; Ettinger, R.L.; Wefel, J.S. Effect of topical fluoride and fluoride varnish on in vitro root surface lesions. Am. J. Dent. 2005, 18, 182–187. [Google Scholar]
- Demito, C.F.; Rodrigues, G.V.; Ramos, A.L.; Bowman, S.J. Efficacy of a fluoride varnish in preventing white-spot lesions as measured with laser fluorescence. J. Clin. Orthod. 2011, 45, 25–29. [Google Scholar]
- Fernández, C.E.; Tenuta, L.M.; Zárate, P.; Cury, J.A. Insoluble naf in duraphat® may prolong fluoride reactivity of varnish retained on dental surfaces. Braz. Dent. J. 2014, 25, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.M.; Tjäderhane, L.; Scaffa, P.M.; Tersariol, I.L.; Pashley, D.; Nader, H.B.; Nascimento, F.D.; Carrilho, M.R. Abundance of mmps and cysteine cathepsins in caries-affected dentin. J. Dent. Res. 2014, 93, 269–274. [Google Scholar] [CrossRef]
- Kato, M.T.; Bolanho, A.; Zarella, B.L.; Salo, T.; Tjäderhane, L.; Buzalaf, M.A. Sodium fluoride inhibits mmp-2 and mmp-9. J. Dent. Res. 2014, 93, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Altankhishig, B.; Matsuda, Y.; Nagano-Takebe, F.; Okuyama, K.; Yamamoto, H.; Sakurai, M.; Naito, K.; Hayashi, M.; Sano, H.; Sidhu, S.K.; et al. Potential of fluoride-containing zinc oxide and copper oxide nanocomposites on dentin bonding ability. Nanomaterials 2022, 12, 1291. [Google Scholar] [CrossRef]
- Fure, S.; Lingström, P. Evaluation of different fluoride treatments of initial root carious lesions in vivo. Oral Health Prev. Dent. 2009, 7, 147–154. [Google Scholar] [PubMed]
- Wallace, M.C.; Retief, D.H.; Bradley, E.L. The 48-month increment of root caries in an urban population of older adults participating in a preventive dental program. J. Public Health Dent. 1993, 53, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.D.; Ruan, J.; Zhang, N.; Chow, L.C.; Zhang, K.; Chang, X.; Bai, Y.; Xu, H.H.K. Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions. Dent. Mater. 2017, 33, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Zero, D.T. Dentifrices, mouthwashes, and remineralization/caries arrestment strategies. BMC Oral Health 2006, 6 (Suppl. 1), S9. [Google Scholar] [CrossRef]
Material | Ingredients | Code | Manufacturer |
---|---|---|---|
MS Coat F | Copolymer with sulfonic acid group | MS | SUN MEDICAL |
Oxalic acid | |||
Water | |||
Sodium fluoride (3000 ppm) | |||
MS Coat Hys-Block Gel | Copolymer with sulfonic acid group | HS | SUN MEDICAL |
Oxalic acid | |||
Water | |||
Sodium fluoride (900 ppm) | |||
Potassium salt | |||
Thickener | |||
CTX2 Varnish | Sodium fluoride 5% (22,600 ppm) | FV | Oral Biotech |
Rosin | |||
Ethanol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuda, Y.; Altankhishig, B.; Okuyama, K.; Yamamoto, H.; Naito, K.; Hayashi, M.; Sano, H.; Sidhu, S.K.; Saito, T. Inhibition of Demineralization of Dentin by Fluoride-Containing Hydrogel Desensitizers: An In Vitro Study. J. Funct. Biomater. 2022, 13, 246. https://doi.org/10.3390/jfb13040246
Matsuda Y, Altankhishig B, Okuyama K, Yamamoto H, Naito K, Hayashi M, Sano H, Sidhu SK, Saito T. Inhibition of Demineralization of Dentin by Fluoride-Containing Hydrogel Desensitizers: An In Vitro Study. Journal of Functional Biomaterials. 2022; 13(4):246. https://doi.org/10.3390/jfb13040246
Chicago/Turabian StyleMatsuda, Yasuhiro, Bayarchimeg Altankhishig, Katsushi Okuyama, Hiroko Yamamoto, Katsuaki Naito, Mikako Hayashi, Hidehiko Sano, Sharanbir K. Sidhu, and Takashi Saito. 2022. "Inhibition of Demineralization of Dentin by Fluoride-Containing Hydrogel Desensitizers: An In Vitro Study" Journal of Functional Biomaterials 13, no. 4: 246. https://doi.org/10.3390/jfb13040246
APA StyleMatsuda, Y., Altankhishig, B., Okuyama, K., Yamamoto, H., Naito, K., Hayashi, M., Sano, H., Sidhu, S. K., & Saito, T. (2022). Inhibition of Demineralization of Dentin by Fluoride-Containing Hydrogel Desensitizers: An In Vitro Study. Journal of Functional Biomaterials, 13(4), 246. https://doi.org/10.3390/jfb13040246