Accelerating Multiple Sequence Alignments Using Parallel Computing
Abstract
:1. Introduction
2. Related Work
2.1. Pairwise Sequence Alignment (PSA)
2.2. Multiple Sequence Alignment
3. Methodology
3.1. Dataset and Experimental Setup
- 1024, 2048, 4096, and 8192 characters for 2-sequence alignment.
- 128, 256, 512, and 1024 characters for 3-sequence alignment.
- 64, 128, 256, and 512 characters for 4-sequence alignment.
- 64, 128, and 256 characters for 5-sequence alignment.
3.2. Sequential Implementation
3.2.1. Sequential Pairwise Sequence Alignment
Algorithm 1 Sequential implementation of two sequences |
Input: Two unaligned sequences Output: Two aligned sequences 1. for i = 0 to length(A) 2. F(I,0) ← gap * i 3. End for 4. for j = 0 to length(B) 5. F(0,j) ← gap * j 6. End for 7. for i = 1 to length(A) 8. for j = 1 to length(B) 9. S1 ← F(i−1,j−1) + S(Ai,Bj) 10. S2 ← F(i−1,j) + gap 11. S3 ← F(I,j−1) + gap 12. F(I,j) ← max(s1, s2, s2) 13. End for 14. End for |
3.2.2. Sequential Multiple Sequence Alignment
Algorithm 2 Sequential Implementation of Three Sequences |
Input: Three unaligned sequences Output: Three aligned sequences 1. for i = 0 to length(A) 2. F(i,0,0) ← gap * i 3. End for 4. for j = 0 to length(B) 5. F(0,j,0) ← gap * j 6. End for 7. for k = 0 to length(C) 8. F(0,0,k) ← gap * k 9. End for 10. For i = 1 to length(A) 11. for j = 1 to length(B) 12. for k = 1 to length(C) 13. S1 ← F(i−1,j−1,k−1) + S(Ai,Bj,Ck) 14. S2 ← F(i−1,j−1,k) + S(Ai,Bj,−) 15. S3 ← F(i−1,j,k−1) + S(Ai,−,Ck) 16. S4 ← F(i,j−1,k−1) + S(−,Bj,Ck) 17. S5 ← F(i−1,j,k) + S(Ai,−,−) 18. S6 ← F(i,j−1,k) + S(−,Bj,−) 19. S7 ← F(i,j,k−1) + S(−,−,Ck) 20. F(i,j,k) ← max(s1, s2, s2,…,s7) 21. End for 22. End for 23. End for |
3.3. Parallel Implementation
3.3.1. First Parallel Approach: Diagonal Traversing
3.3.2. Second Parallel Approach: Using Blocks
3.3.3. Third Parallel Approach: Slicing
4. Results
4.1. Sequential Implementation Results
4.1.1. Sequential Pairwise Sequence Alignment Results
4.1.2. Sequential Multiple Sequence Alignment
4.2. Parallel Implementation Results
4.2.1. First Parallel Approach (Diagonal Traversing) Results
4.2.2. Second Parallel Approach (Using Blocks) Results
4.2.3. Third Parallel Approach (Slicing) Results
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diab, S.; Nassereldine, A.; Alser, M.; Gómez Luna, J.; Mutlu, O.; El Hajj, I. A framework for high-throughput sequence alignment using real processing-in-memory systems. Bioinformatics 2023, 39, btad155. [Google Scholar] [CrossRef]
- Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970, 48, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 195–197. [Google Scholar] [CrossRef]
- Agrawal, A.; Huang, X. Pairwise statistical significance of local sequence alignment using sequence-specific and position-specific substitution matrices. IEEE/ACM Trans. Comput. Biol. Bioinform. 2009, 8, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Batzoglou, S. Multiple sequence alignment. Curr. Opin. Struct. Biol. 2006, 16, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Bellman, R.E.; Dreyfus, S.E. Applied Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 2015; Volume 2050. [Google Scholar]
- Chao, J.; Tang, F.; Xu, L. Developments in algorithms for sequence alignment: A review. Biomolecules 2022, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Khokhar, A. An Overview of Multiple Sequence Alignment Systems. arXiv 2009, arXiv:0901.2747. [Google Scholar]
- Chatzou, M.; Magis, C.; Chang, J.M.; Kemena, C.; Bussotti, G.; Erb, I.; Notredame, C. Multiple sequence alignment modeling: Methods and applications. Briefings Bioinform. 2016, 17, 1009–1023. [Google Scholar] [CrossRef]
- Zemali, E.a.; Boukra, A. A new hybrid bio-inspired approach to resolve the multiple sequence alignment problem. In Proceedings of the 2016 International Conference on Control, Decision and Information Technologies (CoDIT), Saint Julian’s, Malta, 6–8 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 108–113. [Google Scholar]
- Amorim, A.R.; Zafalon, G.F.D.; de Godoi Contessoto, A.; Valêncio, C.R.; Sato, L.M. Metaheuristics for multiple sequence alignment: A systematic review. Comput. Biol. Chem. 2021, 94, 107563. [Google Scholar] [CrossRef]
- Bafna, V.; Lawler, E.L.; Pevzner, P.A. Approximation algorithms for multiple sequence alignment. Theor. Comput. Sci. 1997, 182, 233–244. [Google Scholar] [CrossRef]
- Nowicki, M.; Bzhalava, D.; BaŁa, P. Massively parallel implementation of sequence alignment with basic local alignment search tool using parallel computing in java library. J. Comput. Biol. 2018, 25, 871–881. [Google Scholar] [CrossRef]
- Chiaromonte, F.; Yap, V.B.; Miller, W. Scoring pairwise genomic sequence alignments. In Biocomputing 2002; World Scientific: Singapore, 2001; pp. 115–126. [Google Scholar]
- Haque, W.; Aravind, A.; Reddy, B. Pairwise sequence alignment algorithms: A survey. In Proceedings of the 2009 Conference on Information Science, Technology and Applications, Sliema, Malta, 11–16 October 2009; pp. 96–103. [Google Scholar]
- Edgar, R.C.; Sjölander, K. A comparison of scoring functions for protein sequence profile alignment. Bioinformatics 2004, 20, 1301–1308. [Google Scholar] [CrossRef]
- Li, H.; Homer, N. A survey of sequence alignment algorithms for next-generation sequencing. Briefings Bioinform. 2010, 11, 473–483. [Google Scholar] [CrossRef]
- Abbasi, M.; Paquete, L.; Liefooghe, A.; Pinheiro, M.; Matias, P. Improvements on bicriteria pairwise sequence alignment: Algorithms and applications. Bioinformatics 2013, 29, 996–1003. [Google Scholar] [CrossRef]
- Gotoh, O. An improved algorithm for matching biological sequences. J. Mol. Biol. 1982, 162, 705–708. [Google Scholar] [CrossRef]
- Pearson, W.R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzym. 1990, 183, 63–98. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Daily, J. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments. BMC Bioinform. 2016, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Issa, M.; Hassanien, A.E.; Oliva, D.; Helmi, A.; Ziedan, I.; Alzohairy, A. ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Syst. Appl. 2018, 99, 56–70. [Google Scholar] [CrossRef]
- Aguado-Puig, Q.; Marco-Sola, S.; Moure, J.C.; Matzoros, C.; Castells-Rufas, D.; Espinosa, A.; Moreto, M. WFA-GPU: Gap-affine pairwise alignment using GPUs. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kaur, K.; Chakraborty, S.; Gupta, M.K. Accelerating Smith-Waterman Algorithm for Faster Sequence Alignment using Graphical Processing Unit. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; Volume 2161, p. 012028. [Google Scholar]
- Fakirah, M.; Shehab, M.A.; Jararweh, Y.; Al-Ayyoub, M. Accelerating needleman-wunsch global alignment algorithm with gpus. In Proceedings of the 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA), Marrakech, Morocco, 17–20 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Balhaf, K.; Shehab, M.A.; Wala’a, T.; Al-Ayyoub, M.; Al-Saleh, M.; Jararweh, Y. Using gpus to speed-up levenshtein edit distance computation. In Proceedings of the 2016 7th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 5–7 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 80–84. [Google Scholar]
- Jararweh, Y.; Al-Ayyoub, M.; Fakirah, M.; Alawneh, L.; Gupta, B.B. Improving the performance of the needleman-wunsch algorithm using parallelization and vectorization techniques. Multimed. Tools Appl. 2019, 78, 3961–3977. [Google Scholar] [CrossRef]
- Shehab, M.A.; Ghadawi, A.A.; Alawneh, L.; Al-Ayyoub, M.; Jararweh, Y. A hybrid CPU-GPU implementation to accelerate multiple pairwise protein sequence alignment. In Proceedings of the 2017 8th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 12–17. [Google Scholar]
- Sievers, F.; Higgins, D.G. Clustal Omega, accurate alignment of very large numbers of sequences. Mult. Seq. Alignment Methods 2014, 1079, 105–116. [Google Scholar]
- Boyce, K.; Sievers, F.; Higgins, D.G. Instability in progressive multiple sequence alignment algorithms. Algorithms Mol. Biol. 2015, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wallace, I.M.; Higgins, D.G. Evaluation of iterative alignment algorithms for multiple alignment. Bioinformatics 2005, 21, 1408–1414. [Google Scholar] [CrossRef]
- Notredame, C. Recent evolutions of multiple sequence alignment algorithms. PLoS Comput. Biol. 2007, 3, e123. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.F.; Hassanien, A.E. A survey of metaheuristics methods for bioinformatics applications. In Applications of Intelligent Optimization in Biology and Medicine: Current Trends and Open Problems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 23–46. [Google Scholar]
- Riaz, T.; Wang, Y.; Li, K.B. Multiple sequence alignment using tabu search. In Proceedings of the Second Conference on Asia-Pacific Bioinformatics, Dunedin, New Zealand, 18–22 January 2004; Volume 29, pp. 223–232. [Google Scholar]
- Kim, J.; Pramanik, S.; Chung, M.J. Multiple sequence alignment using simulated annealing. Bioinformatics 1994, 10, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Chen, Y. A method for multiple sequence alignment based on particle swarm optimization. In Proceedings of the Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence: 5th International Conference on Intelligent Computing, ICIC 2009, Ulsan, Republic of Korea, 16–19 September 2009; Proceedings 5. Springer: Berlin/Heidelberg, Germany, 2009; pp. 965–973. [Google Scholar]
- Chowdhury, B.; Garai, G. A review on multiple sequence alignment from the perspective of genetic algorithm. Genomics 2017, 109, 419–431. [Google Scholar] [CrossRef]
- Zambrano-Vega, C.; Nebro, A.J.; García-Nieto, J.; Aldana-Montes, J.F. Comparing multi-objective metaheuristics for solving a three-objective formulation of multiple sequence alignment. Prog. Artif. Intell. 2017, 6, 195–210. [Google Scholar] [CrossRef]
- Smirnov, V. Recursive MAGUS: Scalable and accurate multiple sequence alignment. PLoS Comput. Biol. 2021, 17, e1008950. [Google Scholar] [CrossRef]
- Steenwyk, J.L.; Buida III, T.J.; Li, Y.; Shen, X.X.; Rokas, A. ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 2020, 18, e3001007. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, T.; Sonnhammer, E.L. Kalign—An accurate and fast multiple sequence alignment algorithm. BMC Bioinform. 2005, 6, 298. [Google Scholar] [CrossRef] [PubMed]
- Do, C.B.; Mahabhashyam, M.S.; Brudno, M.; Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005, 15, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.i.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Notredame, C.; Higgins, D.G.; Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000, 302, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, B. DIALIGN 2: Improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 1999, 15, 211–218. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Mojbak, J.; Pedersen, C. Exact Multiple Sequence Alignment Using Forward Dynamic Programming; Bioinformatics Research Center: Singapore, 2010. [Google Scholar]
- Hosseininasab, A.; van Hoeve, W.J. Exact multiple sequence alignment by synchronized decision diagrams. INFORMS J. Comput. 2021, 33, 721–738. [Google Scholar] [CrossRef]
- González-Domínguez, J. Fast and Accurate Multiple Sequence Alignment with MSAProbs-MPI. In Multiple Sequence Alignment; Springer: Berlin/Heidelberg, Germany, 2021; pp. 39–47. [Google Scholar]
- Ju, F.; Zhu, J.; Shao, B.; Kong, L.; Liu, T.Y.; Zheng, W.M.; Bu, D. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction. Nat. Commun. 2021, 12, 2535. [Google Scholar] [CrossRef] [PubMed]
- Almanza-Ruiz, S.H.; Chavoya, A.; Duran-Limon, H.A. Parallel protein multiple sequence alignment approaches: A systematic literature review. J. Supercomput. 2023, 79, 1201–1234. [Google Scholar] [CrossRef]
- Helal, M.; El-Gindy, H.; Mullin, L.; Gaeta, B. Parallelizing optimal multiple sequence alignment by dynamic programming. In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications, Sydney, NSW, Australia, 10–12 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 669–674. [Google Scholar]
- Hung, C.L.; Lin, Y.S.; Lin, C.Y.; Chung, Y.C.; Chung, Y.F. CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs. Comput. Biol. Chem. 2015, 58, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Toya, T.; Hoshida, M.; Nitta, K.; Ogiwara, A.; Kanehisa, M. Multiple sequence alignment by parallel simulated annealing. Bioinformatics 1993, 9, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Blazewicz, J.; Frohmberg, W.; Kierzynka, M.; Wojciechowski, P. G-MSA—A GPU-based, fast and accurate algorithm for multiple sequence alignment. J. Parallel Distrib. Comput. 2013, 73, 32–41. [Google Scholar] [CrossRef]
- Zou, Q.; Hu, Q.; Guo, M.; Wang, G. HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy. Bioinformatics 2015, 31, 2475–2481. [Google Scholar] [CrossRef]
- Wan, S.; Zou, Q. HAlign-II: Efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing. Algorithms Mol. Biol. 2017, 12, 25. [Google Scholar] [CrossRef]
- Zou, Q.; Wan, S.; Zeng, X.; Ma, Z.S. Reconstructing evolutionary trees in parallel for massive sequences. BMC Syst. Biol. 2017, 11, 100. [Google Scholar] [CrossRef]
- Su, W.; Liao, X.; Lu, Y.; Zou, Q.; Peng, S. Multiple sequence alignment based on a suffix tree and center-star strategy: A linear method for multiple nucleotide sequence alignment on spark parallel framework. J. Comput. Biol. 2017, 24, 1230–1242. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Tang, S.; Yu, C.; Zou, Q. CMSA: A heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment. BMC Bioinform. 2017, 18, 315. [Google Scholar] [CrossRef]
- Siriwardena, T.; Ranasinghe, D. Accelerating global sequence alignment using CUDA compatible multi-core GPU. In Proceedings of the 2010 Fifth International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka, 17–19 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 201–206. [Google Scholar]
- Al-Hussien, R.A.; Baker, Q.B.; Al-Ayyoub, M. Fast exact sequence alignment using parallel computing. In Proceedings of the 2018 9th International Conference on Information and Communication Systems (ICICS), Security Lille, France, 29–31 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 187–191. [Google Scholar]
# | Technique | Approach | Reference |
---|---|---|---|
1 | Needleman–Wunsch | Dynamic Programming | [2] |
2 | Smith–Waterman | Dynamic Programming | [3] |
3 | Gotoh’s Algorithm | Dynamic Programming | [19] |
4 | FASTA Algorithm | Heuristic | [20] |
5 | BLAST Algorithm | Heuristic | [21] |
6 | EMBOSS Software | Toolkit | [22] |
7 | Parasail | Toolkit/Library | [23] |
7 | Minimap2 | Toolkit/Program | [24] |
9 | ASCA-PSO | Heuristic | [25] |
8 | WFA-GPU | Toolkit | [26] |
# | Technique | Approach | Heuristics | Ref. |
---|---|---|---|---|
1 | Recursive MAGUS | Divide-and-Conquer Alignment | Guide Tree | [42] |
2 | ClipKIT | Trimming Strategies | IQ-TREE Hill-Climbing | [43] |
3 | Kalign | Progressive Alignment | Guide Tree | [44] |
4 | ProbCons | Probabilistic Consistency | Probabilistic Modeling | [45] |
5 | MUSCLE | Progressive Alignment | Guide Tree | [46] |
6 | MAFFT | Progressive Alignment | Guide Tree | [47] |
7 | T-Coffee | Various | Various | [48] |
8 | DIALIGN | Local Multiple Alignment | Pairwise Alignments | [49] |
9 | CLUSTAL W | Progressive Alignment | Guide Tree | [50] |
Sequence Length | 1024 | 2048 | 4096 | 8192 |
Avg. sequential execution time (time is in milliseconds) | 282.3 | 758.3 | 2909.5 | 11,473.5 |
Sequence length | 128 | 256 | 512 | 1024 |
Avg. sequential execution time (time is in milliseconds) | 760.9 | 5817.7 | 45,980.6 | 270,720.8 |
Method | Sequential | Diagonal | Thread = 4 | Thread = 8 | Thread = 500 | |
time (ms) | 282 | 210 | 297,025 | 594,750 | 376 | 97,661 |
Block size | 4 | 8 | 16 |
time (ms) | 65.9 | 48.6 | 40.5 |
Sequence length | 1024 | 2048 | 4096 | 8192 |
Avg. exec.time (sequential) | 282.3 | 758.3 | 2909.5 | 11,473.5 |
Avg. exec.time (parallel) | 48.6 | 186.2 | 630.0 | 2266.2 |
Improvement | 5.8086 | 4.0725 | 4.6182 | 5.0629 |
Sequence Length | Sequential | Parallel BK = 1 | Parallel BK = 16 | Parallel BK = 32 |
---|---|---|---|---|
128 | 760.9 | 717.5 | 211.8 | 158.4 |
256 | 5817.7 | 5481.8 | 1644.8 | 1428.5 |
512 | 45,980.6 | 41,041.8 | 12,356.2 | 11,482.7 |
1024 | 270,720.8 | 254,350.3 | 66,171 | 64,254.1 |
Sequence Length | Avg. Sequential | Avg. Parallel | Improvement | Block Size |
---|---|---|---|---|
128 | 760.9 | 158.4 | 4.803 | 16 |
256 | 5817.7 | 1428.5 | 4.072 | 32 |
512 | 45,980.6 | 11,482.7 | 4.004 | 32 |
1024 | 270,720.8 | 64,254.1 | 4.213 | 32 |
Sequence Length | Avg. Sequential | Avg. Parallel | Improvement | Block Size |
---|---|---|---|---|
64 | 8.547 | 2153 | 3.969 | 8 |
128 | 134,213.5 | 44,568.4 | 3.011 | 16 |
256 | 435,196 | 108,410.7 | 4.014 | 32 |
512 | 952,470.7 | 238,677.1 | 3.990 | 32 |
Sequence Length | Avg. Sequential | Avg. Parallel | Improvement | Block Size |
---|---|---|---|---|
64 | 50,981.3 | 12,484.6 | 4.083 | 8 |
128 | 101,886.4 | 25,636.7 | 3.974 | 16 |
256 | 435,095 | 108,410.7 | 4.013 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bani Baker, Q.; Al-Hussien, R.A.; Al-Ayyoub, M. Accelerating Multiple Sequence Alignments Using Parallel Computing. Computation 2024, 12, 32. https://doi.org/10.3390/computation12020032
Bani Baker Q, Al-Hussien RA, Al-Ayyoub M. Accelerating Multiple Sequence Alignments Using Parallel Computing. Computation. 2024; 12(2):32. https://doi.org/10.3390/computation12020032
Chicago/Turabian StyleBani Baker, Qanita, Ruba A. Al-Hussien, and Mahmoud Al-Ayyoub. 2024. "Accelerating Multiple Sequence Alignments Using Parallel Computing" Computation 12, no. 2: 32. https://doi.org/10.3390/computation12020032
APA StyleBani Baker, Q., Al-Hussien, R. A., & Al-Ayyoub, M. (2024). Accelerating Multiple Sequence Alignments Using Parallel Computing. Computation, 12(2), 32. https://doi.org/10.3390/computation12020032