The MLDAR Model: Machine Learning-Based Denoising of Structural Response Signals Generated by Ambient Vibration
Abstract
:1. Introduction
2. Structural Response Due to Ambient Vibration and SDOF Models
2.1. Structural Response Generated by Ambient Vibration
2.2. Models Used for Calibrating the NN
3. Machine Learning-Based Models: Architecture and Calibration
3.1. Convolutional Neural Networks
3.2. The Autoencoders
3.3. MLDAR: A Machine Learning-Based Model for Denoising the Ambient Structural Response
- Input images (noisy response): minimum value of −0.000442 g, maximum value of 0.000437 g;
- Output images (no-noise response): minimum value of −0.000074 g, maximum value of 0.000072 g.
4. Frequency Spectrum Comparison: Qualitative and Quantitative Results
4.1. Qualitative Comparison: Sample of Low-Frequency Signals
4.2. Qualitative Comparison: Sample of Medium-Frequency Signal
4.3. Qualitative Comparison: Sample of High-Frequency Signal
4.4. Quantitative Results: Comparing Frequency Spectra of Prediction and Target for the Whole Dataset through Magnitude-Squared Coherence
4.5. Quantitative Results: Evaluating Denoising Performance through SNR Levels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANNs | Artificial neural networks |
AV | Ambient vibration |
CNN | Convolutional neural network |
ML | Machine learning |
MLDAR | Machine Learning-based Denoising of Ambient Response |
MEMs | Micro-Electromechanical Systems |
NN | Neural network |
NPUs | Neural Processing Units |
RNN | Recurrent Neural Network |
SDOF | Single Degree of Freedom |
SHM | Structural Health Monitoring |
SNR | Signal-to-Noise Ratio |
References
- Zhang, C.; Mousavi, A.A.; Masri, S.F.; Gholipour, G.; Yan, K.; Li, X. Vibration feature extraction using signal processing techniques for structural health monitoring: A review. Mech. Syst. Signal Process. 2022, 177, 109175. [Google Scholar] [CrossRef]
- Zinno, R.; Shaffiee Haghshenas, S.; Guido, G.; Vitale, A. Artificial Intelligence and Structural Health Monitoring of Bridges: A Review of the State-of-the-Art. IEEE Access 2022, 10, 88058–88078. [Google Scholar] [CrossRef]
- Nadkarni, R.R.; Puthuvayi, B. A comprehensive literature review of Multi-Criteria Decision Making methods in heritage buildings. J. Build. Eng. 2020, 32, 101814. [Google Scholar] [CrossRef]
- Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. J. Cult. Herit. 2021, 47, 227–245. [Google Scholar] [CrossRef]
- Sony, S.; Dunphy, K.; Sadhu, A.; Capretz, M. A systematic review of convolutional neural network-based structural condition assessment techniques. Eng. Struct. 2021, 226, 111347. [Google Scholar] [CrossRef]
- Xu, R.; Wu, R.; Ishiwaka, Y.; Vondrick, C.; Zheng, C. Listening to Sounds of Silence for Speech Denoising. arXiv 2020, arXiv:2010.12013. [Google Scholar]
- Elad, M.; Kawar, B.; Vaksman, G. Image Denoising: The Deep Learning Revolution and Beyond—A Survey Paper. SIAM J. Imaging Sci. 2023, 16, 1594–1654. [Google Scholar] [CrossRef]
- Izadi, S.; Sutton, D.; Hamarneh, G. Image denoising in the deep learning era. Artif. Intell. Rev. 2023, 56, 5929–5974. [Google Scholar] [CrossRef]
- Damikoukas, S.; Lagaros, N.D. MLPER: A Machine Learning-Based Prediction Model for Building Earthquake Response Using Ambient Vibration Measurements. Appl. Sci. 2023, 13, 10622. [Google Scholar] [CrossRef]
- Xiang, P.; Zhang, P.; Zhao, H.; Shao, Z.; Jiang, L. Seismic response prediction of a train-bridge coupled system based on a LSTM neural network. Mech. Based Des. Struct. Mach. 2023, 1–23. [Google Scholar] [CrossRef]
- Demertzis, K.; Kostinakis, K.; Morfidis, K.; Iliadis, L. An interpretable machine learning method for the prediction of R/C buildings’ seismic response. J. Build. Eng. 2023, 63, 105493. [Google Scholar] [CrossRef]
- Kohler, M.D.; Hao, S.; Mishra, N.; Govinda, R.; Nigbor, R.L. ShakeNet: A Portable Wireless Sensor Network for Instrumenting Large Civil Structures; US Geological Survey: Reston, VA, USA, 2015.
- Sabato, A.; Feng, M.Q.; Fukuda, Y.; Carní, D.L.; Fortino, G. A Novel Wireless Accelerometer Board for Measuring Low-Frequency and Low-Amplitude Structural Vibration. IEEE Sens. J. 2016, 16, 2942–2949. [Google Scholar] [CrossRef]
- Sabato, A.; Niezrecki, C.; Fortino, G. Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review. IEEE Sens. J. 2017, 17, 226–235. [Google Scholar] [CrossRef]
- Zhu, L.; Fu, Y.; Chow, R.; Spencer, B.F.; Park, J.W.; Mechitov, K. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring. Sensors 2018, 18, 262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yan, G.; Wang, L.; Ou, J. Review of Benchmark Studies and Guidelines for Structural Health Monitoring. Adv. Struct. Eng. 2013, 16, 1187–1206. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.; Yan, B. Specifications and applications of the technical code for monitoring of building and bridge structures in China. Adv. Mech. Eng. 2017, 9, 1687814016684272. [Google Scholar] [CrossRef]
- Moreu, F.; Li, X.; Li, S.; Zhang, D. Technical Specifications of Structural Health Monitoring for Highway Bridges: New Chinese Structural Health Monitoring Code. Front. Built Environ. 2018, 4, 10. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Tan, X. Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes. Symmetry 2021, 13, 1998. [Google Scholar] [CrossRef]
- Dunand, F.; Gueguen, P.; Bard, P.Y.; Rodgers, J. Comparison of the dynamic parameters extracted from weak, moderate and strong building motion. In Proceedings of the 1st European Conference of Earthquake Engineering and Seismology, Geneva, Switzerland, 3–8 September 2006. [Google Scholar]
- Damikoukas, S.; Chatzieleftheriou, S.; Lagaros, N.D. First Level Pre- and Post-Earthquake Building Seismic Assessment Protocol Based on Dynamic Characteristics Extracted In Situ. Infrastructures 2022, 7, 115. [Google Scholar] [CrossRef]
- ADINA, version: 9.2.1; ADINA R&D Inc.: Watertown, MA, USA, 2016. Available online: http://www.adina.com/(accessed on 19 September 2022).
- FEMA. Hazus—MH 2.1: Technical Manual; Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division: Washington, DC, USA, 2013. [Google Scholar]
- MATLAB, version 9.11.0 (R2021b); The MathWorks Inc.: Natick, MA, USA, 2021.
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Shabani, A.; Feyzabadi, M.; Kioumarsi, M. Model updating of a masonry tower based on operational modal analysis: The role of soil-structure interaction. Case Stud. Constr. Mater. 2022, 16, e00957. [Google Scholar] [CrossRef]
- Unquake. Unquake Accelerograph-Accelerometer Specifications. Available online: https://unquake.co (accessed on 19 September 2022).
- Chatzieleftheriou, S.; Damikoukas, S. Optimal Sensor Installation to Extract the Mode Shapes of a Building—Rotational DOFs, Torsional Modes and Spurious Modes Detection. Technical Report. Unquake (Structures & Sensors P.C.). 2021. Available online: https://www.researchgate.net/institution/Unquake/post/6130bc2ca1abfe50c1559a26_Download_White_Paper_Optimal_sensor_installation_to_extract_the_mode_shapes_of_a_building-Rotational_DOFs_torsional_modes_and_spurious_modes_detection (accessed on 19 September 2022).
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Rabiner, L.R.; Gold, B. Theory and Application of Digital Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Kay, S. Spectral Estimation. In Advanced Topics in Signal Processing; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1987; pp. 58–122. [Google Scholar]
Geometry | |
Plan | 10.00 × 7.00 (m2) |
Stories | 1 to 7 |
Story height | 3.50 (m) |
Slab thickness | 0.25 (m) |
Columns | 0.50 × 0.50 (m2) |
Beams | 0.40 × 0.70 (m2) |
Loads | |
Dead | 806.75 (kN) |
Live | 806.75 (kN) |
Safety factor | 1 1 |
Dynamic characteristics | |
Mass (per story) | 110.78 (tons) |
Damping ratio | 5% |
Eigenfrequency | 1 to 10 Hz with step of 0.5 |
Material | |
Reinforced concrete | |
Bilinear material | Figure 2 |
Yield point | 0.0105 m 2 |
Post-yield stiffness | 50% of geometric one 3 |
Encoder | ||||
---|---|---|---|---|
C1 1 | C2 1 | C3 1 | C4 1 | |
Filters: | 128 | 64 | 64 | 64 |
Kernel size: | (2,2) | (2,2) | (2,2) | (2,2) |
Dilation: | (1,1) | (2,2) | (4,4) | (6,6) |
Stride: | (1,1) | (1,1) | (1,1) | (1,1) |
Padding: | Valid | Valid | Valid | Valid |
Decoder | Upscaling | |||||
---|---|---|---|---|---|---|
TC1 1 | TC2 1 | TC3 1 | TC4 1 | TC5 1 | C5 2 | |
Filters: | 64 | 64 | 64 | 128 | 128 | 1 |
Kernel size: | (2,2) | (2,2) | (2,2) | (2,2) | (4,4) | (3,2) |
Dilation: | (6,6) | (4,4) | (2,2) | (1,1) | (1,1) | (1,1) |
Stride: | (1,1) | (1,1) | (1,1) | (1,1) | (3,3) | (1,1) |
Padding: | Valid | Valid | Valid | Valid | Valid | Valid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damikoukas, S.; Lagaros, N.D. The MLDAR Model: Machine Learning-Based Denoising of Structural Response Signals Generated by Ambient Vibration. Computation 2024, 12, 31. https://doi.org/10.3390/computation12020031
Damikoukas S, Lagaros ND. The MLDAR Model: Machine Learning-Based Denoising of Structural Response Signals Generated by Ambient Vibration. Computation. 2024; 12(2):31. https://doi.org/10.3390/computation12020031
Chicago/Turabian StyleDamikoukas, Spyros, and Nikos D. Lagaros. 2024. "The MLDAR Model: Machine Learning-Based Denoising of Structural Response Signals Generated by Ambient Vibration" Computation 12, no. 2: 31. https://doi.org/10.3390/computation12020031
APA StyleDamikoukas, S., & Lagaros, N. D. (2024). The MLDAR Model: Machine Learning-Based Denoising of Structural Response Signals Generated by Ambient Vibration. Computation, 12(2), 31. https://doi.org/10.3390/computation12020031