Revealing the Genetic Code Symmetries through Computations Involving Fibonacci-like Sequences and Their Properties
Abstract
:1. Introduction
1.1. The Genetic Code
- Three sextets: each coded by six codons serine (Ser), arginine (Arg) and leucine (Leu);
- Five quartets: each coded by four codons proline (Pro), alanine (Ala), threonine (Thr), valine (Val) and glycine Gly);
- One triplet: coded by three codons isoleucine (Ile);
- Nine doublets: each coded by two codons phenylalanine (Phe), tyrosine (Tyr), cysteine (Cys), histidine (His), glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp), asparagine (Asn) and lysine (Lys);
- Two singlets: each coded by one codon methionine (Met) and tryptophane (Trp).
1.2. Previous Works
1.3. The Novelty in This Work
2. The Symmetries of the Genetic Code
2.1. Rumer’s Symmetry
2.2. The Third Base Symmetry Classification
2.3. The Weak/Strong, Purine/Pyrimidine and Keto/Amino Symmetries
3. A Rich Set of Fibonacci-like Sequences and Their Properties
4. The Symmetries of the Genetic Code Revealed
4.1. The Multiplet Structure
4.2. Hydrogen Atom Content and the Symmetries
4.2.1. The Hydrogen Atom Content
4.2.2. The Hydrogen Atom Content in the “Ideal” Symmetry Classification Scheme
4.2.3. The Hydrogen Atom Content in Rumer’s Symmetry
4.2.4. The Hydrogen Atom Content in the Third Base Symmetry
4.2.5. On the Choice of the “Seeds” of the Fibonacci-like Sequences
4.3. The Atom Content and Degeneracy
4.4. Derivation of Several Nucleon Number Patterns
5. On Proline’s Singularity and a Derivation of the shCherbak–Makukov “Activation” Key
6. A Remarkable Imprint in the “Seeds”
7. The Case of the Vertebrate Mitochondrial Genetic Code
8. Conclusions
1. | Hydrogen atoms in all the amino acid side chains coded by 61 sense codons (Section 4.2) |
2. | Atoms (H/CNOS) in all the amino acid side chains coded by 61 sense codons (Section 4.3) |
3. | Integer molecular mass (nucleon number) in all the amino acid side chains coded by 61 sense codons (Section 4.4) |
4. | Hydrogen atoms in all the amino acid side chains coded by 60 sense codons in the vertebrate mitochondrial genetic code (Rumer’s division, Section 7) |
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
M | Amino Acid | # H | # C | # N/O/S | # Atoms | # Nucleons |
---|---|---|---|---|---|---|
4 | Proline (Pro) | 5 | 3 | 0 | 8 | 41 |
Alanine (Ala) | 3 | 1 | 0 | 4 | 15 | |
Threonine (Thr) | 5 | 2 | 0/1/0 | 8 | 45 | |
Valine (Val) | 7 | 3 | 0 | 10 | 43 | |
Glycine (Gly) | 1 | 0 | 0 | 1 | 1 | |
6 | Serine (Ser) | 3 | 1 | 0/1/0 | 5 | 31 |
Leucine (Leu) | 9 | 4 | 0 | 13 | 57 | |
Arginine (Arg) | 10 | 4 | 3/0/0 | 17 | 100 | |
2 | Phenylalanine (Phe) | 7 | 7 | 0 | 14 | 91 |
Tyrosine (Tyr) | 7 | 7 | 0/1/0 | 15 | 107 | |
Cysteine (Cys) | 3 | 1 | 0/0/1 | 5 | 47 | |
Histidine (His) | 5 | 4 | 2/0/0 | 11 | 81 | |
Glutamine (Gln) | 6 | 3 | 1/1/0 | 11 | 72 | |
Asparagine (Asn) | 4 | 2 | 1/1/0 | 8 | 58 | |
Lysine (Lys) | 10 | 4 | 1/0/0 | 15 | 72 | |
Aspartic Acid (Asp) | 3 | 2 | 0/2/0 | 7 | 59 | |
Glutamic Acid (Glu) | 5 | 3 | 0/2/0 | 10 | 73 | |
3 | Isoleucine (Ile) | 9 | 4 | 0 | 13 | 57 |
1 | Methionine (Met) | 7 | 3 | 0/0/1 | 11 | 75 |
Tryptophane (Trp) | 8 | 9 | 1/0/0 | 18 | 130 | |
Total (20) | 117 | 67 | 20 | 204 | 1255 | |
Total (23) | 139 | 76 | 24 | 239 | 1443 | |
Total (38) | 219 | 104 | 32 | 355 | 1961 | |
Total (61) | 358 | 180 | 56 | 594 | 3404 | |
172/186 | 264/330 | 1332/2072 |
Appendix B
Appendix C
References
- Nirenberg, M.; Leder, P.; Bernfield, M.; Brimacombe, R.; Trupin, J.; Rottman, F.; O’Neal, C.N.A. Codewords and Protein Synthesis, VII. On the General Nature of the RNA Code. Proc. Natl. Acad. Sci. USA 1965, 53, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Inouye, M.; Takino, R.; Ishida, Y.; Inouye, K. Evolution of the genetic code; Evidence from codon use disparity in Escherichia coli. Proc. Natl. Acad. Sci. USA 2020, 117, 28572–28575. [Google Scholar] [CrossRef] [PubMed]
- Zwick, A.; Regier, J.C.; Zwickl, D. Resolving Discrepancy between Nucleotides and Amino Acids in Deep-Level Arthropod Phylogenomics: Differentiating Serine Codons in 21-Amino-Acid Models. PLoS ONE 2012, 7, e47450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Yang, Q.; Xia, X. An improved implementation of effective number of codons (Nc). Mol. Biol. Evol. 2013, 30, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Négadi, T. The genetic code multiplet structure, in one number. Symmetry Cult. Sci. 2007, 18, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Négadi, T. The Genetic Code via Gödel Encoding. Open Phys. Chem. J. 2008, 2, 1–5. [Google Scholar] [CrossRef]
- Négadi, T. The genetic code invariance: When Euler and Fibonacci meet 2014. Symmetry Cult. Sci. 2014, 25, 261–278. [Google Scholar]
- Rumer, Y. About systematization of the genetic code. Dok. Akad. Nauk SSSR 1966, 167, 1393–1394. [Google Scholar]
- Findley, G.I.; Findley, A.M.; McGlynn, S.P. Symmetry characteristics of the genetic code. Proc. Natl. Acad. Sci. USA 1982, 79, 7061–7065. [Google Scholar] [CrossRef] [PubMed]
- Rosandić, M.; Paar, V. Codons sextets with leading role of serine create “ideal” symmetry classification scheme of the genetic code. Gene 2014, 543, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Rosandić, M.; Paar, V. The novel Ideal Symmetry Genetic Code table-Common purine-pyrimidine symmetry net for all RNA and DNA species. J. Theor. Biol. 2021, 524, 110748. [Google Scholar] [CrossRef] [PubMed]
- shCherbak, V. The Arithmetical origin of the genetic code. In The Codes of Life: The Rules of Macroevolution; Barbieri, M., Ed.; Springer Publishers: New York, NY, USA, 2008; pp. 153–185. [Google Scholar]
- shCherbak, V.; Makukov, M. The “wow! Signal” of the terrestrial genetic code. Icarus 2013, 224, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Edge, M. Symmetry in Fibonacci numbers. Symmetry Cult. Sci. 2009, 20, 393–408. [Google Scholar]
- Rakočević, M.M. Genetic Code: The unity of the stereochemical determinism and pure chance. arXiv 2009, arXiv:0904.1161v1. [Google Scholar]
- Shu, J.J. A new integrated symmetrical table for genetic codes. Biosystems 2017, 151, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, J. Physico-chemical constraints connected with the coding properties of the genetic system. J. Theor. Biol. 2000, 202, 129–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, D.L.; Giannerini, S.; Rosa, R. On the origin of the mitochondrial genetic code. Towards a unfied mathematical framework for the management of genetic information. Nat. Prec. 2012, 2012, 1–20. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?chapter=tgencodes#SG2 (accessed on 27 July 2023).
- Downes, A.M.; Richardson, B.J. Relationships between genomic base content and distribution of mass in coded proteins. J. Mol. Evol. 2002, 55, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.dcode.fr/euler-totient (accessed on 27 July 2023).
- Available online: https://t5k.org/glossary/page.php?sort=EulersTheorem (accessed on 27 July 2023).
- Available online: https://www.programiz.com/python-programming/examples/fibonacci-sequence (accessed on 27 July 2023).
- Available online: https://www.programiz.com/cpp-programming/examples/fibonacci-series (accessed on 27 July 2023).
UUU-Phe | UUC-Phe | UCU-Ser | UCC-Ser | CUU-Leu | CUC-Leu | CCU-Pro | CCC-Pro |
UUA-Leu | UUG-Leu | UCA-Ser | UCG-Ser | CUA-Leu | CUG-Leu | CCA-Pro | CCG-Pro |
UAU-Tyr | UAC-Tyr | UGU-Cys | UGC-Cys | CAU-His | CAC-His | CGU-Arg | CGC-Arg |
UAA-Stop | UAG-Stop | UGA-Stop | UGG-Trp | CAA-Gln | CAG-Gln | CGA-Arg | CGG-Arg |
AUU-Ile | AUC-Ile | ACU-Thr | ACC-Thr | GUU-Val | GUC-Val | GCU-Ala | GCC-Ala |
AUA-Ile | AUG-Met | ACA-Thr | ACG-Thr | GUA-Val | GUG-Val | GCA-Ala | GCG-Ala |
AAU-Asn | AAC-Asn | AGU-Ser | AGC-Ser | GAU-Asp | GAC-Asp | GGU-Gly | GGC-Gly |
AAA-Lys | AAG-Lys | AGA-Arg | AGG-Arg | GAA-Glu | GAG-Glu | GGA-Gly | GGG-Gly |
UUU-Phe | UUC-Phe | UCU-Ser | UCC-Ser | CUU-Leu | CUC-Leu | CCU-Pro | CCC-Pro |
UUA-Leu | UUG-Leu | UCA-Ser | UCG-Ser | CUA-Leu | CUG-Leu | CCA-Pro | CCG-Pro |
UAU-Tyr | UAC-Tyr | UGU-Cys | UGC-Cys | CAU-His | CAC-His | CGU-Arg | CGC-Arg |
UAA-Stop | UAG-Stop | UGA-Stop | UGG-Trp | CAA-Gln | CAG-Gln | CGA-Arg | CGG-Arg |
AUU-Ile | AUC-Ile | ACU-Thr | ACC-Thr | GUU-Val | GUC-Val | GCU-Ala | GCC-Ala |
AUA-Ile | AUG-Met | ACA-Thr | ACG-Thr | GUA-Val | GUG-Val | GCA-Ala | GCG-Ala |
AAU-Asn | AAC-Asn | AGU-Ser | AGC-Ser | GAU-Asp | GAC-Asp | GGU-Gly | GGC-Gly |
AAA-Lys | AAG-Lys | AGA-Arg | AGG-Arg | GAA-Glu | GAG-Glu | GGA-Gly | GGG-Gly |
UCU | Ser (6) | UCC | Ser (6) | UCA | Ser (3) | UCG | Ser (3) |
AGU | AGC | AGA | Arg (20) | AGG | Arg (20) | ||
CGU | Arg (10) | CGC | Arg (10) | CGA | CGG | ||
CUU | Leu (9) | CUC | Leu (9) | CUA | Leu (18) | CUG | Leu (18) |
GCU | Ala (4) | GCC | Ala (4) | UUA | UUG | ||
GUU | Val (7) | GUC | Val (7) | GCA | Ala (3) | GCG | Ala (3) |
CCU | Pro (5) | CCC | Pro (5) | GUA | Val (7) | GUG | Val (7) |
GGU | Gly (1) | GGC | Gly (1) | CCA | Pro (5) | CCG | Pro (5) |
ACU | Thr (5) | ACC | Thr (5) | GGA | Gly (1) | GGG | Gly (1) |
UUU | Phe (7) | UUC | Phe (7) | ACA | Thr (5) | ACG | Thr (5) |
UAU | Tyr (7) | UAC | Tyr (7) | CAA | Gln (6) | CAG | Gln (6) |
UGU | Cys (3) | UGC | Cys (3) | AAA | Lys (10) | AAG | Lys (10) |
CAU | His (5) | CAC | His (5) | GAA | Glu (5) | GAG | Glu (5) |
GAU | Asp (3) | GAC | Asp (3) | UAA | Stop | UAG | Stop |
AAU | Asn (4) | AAC | Asn (4) | UGA | UGG | Trp (8) | |
AUU | Ile (9) | AUC | Ile (9) | AUA | Ile (9) | AUG | Met (7) |
Hydrogen | 84 | 84 | 92 | 98 | |||
Nucleons | 1728 | 1676 |
UUU-Phe | UUC-Phe | UCU-Ser | UCC-Ser | CUU-Leu | CUC-Leu | CCU-Pro | CCC-Pro |
UUA-Leu | UUG-Leu | UCA-Ser | UCG-Ser | CUA-Leu | CUG-Leu | CCA-Pro | CCG-Pro |
UAU-Tyr | UAC-Tyr | UGU-Cys | UGC-Cys | CAU-His | CAC-His | CGU-Arg | CGC-Arg |
UAA-Stop | UAG-Stop | UGA-Stop | UGG-Trp | CAA-Gln | CAG-Gln | CGA-Arg | CGG-Arg |
AUU-Ile | AUC-Ile | ACU-Thr | ACC-Thr | GUU-Val | GUC-Val | GCU-Ala | GCC-Ala |
AUA-Ile | AUG-Met | ACA-Thr | ACG-Thr | GUA-Val | GUG-Val | GCA-Ala | GCG-Ala |
AAU-Asn | AAC-Asn | AGU-Ser | AGC-Ser | GAU-Asp | GAC-Asp | GGU-Gly | GGC-Gly |
AAA-Lys | AAG-Lys | AGA-Arg | AGG-Arg | GAA-Glu | GAG-Glu | GGA-Gly | GGG-Gly |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
p = 1, q = 6 | 6 | 1 | 7 | 8 | 15 | 23 | 38 | 61 | 99 | 160 | 259 | 419 | 678 | |
p = 6, q = 1 | 1 | 6 | 7 | 13 | 20 | 33 | 53 | 86 | 139 | 225 | 364 | 589 | 953 | |
p = 9, q = 13 | 13 | 9 | 22 | 31 | 53 | 84 | 137 | 221 | 358 | 579 | 937 | 1516 | 2453 | |
p = 5, q = 30 | 30 | 5 | 35 | 40 | 75 | 115 | 190 | 305 | 495 | 800 | 1295 | 2095 | 3390 |
multiplets | # amino acids | # degenerate codons | total | |
quartets quartet parts of the sextets | 5 | 15 | 20 | |
3 | 9 | 12 | ||
total | 8 | 24 | 32 | |
multiplets | # amino acids | # degenerate codons | total | |
doublets doublet parts of the sextets | 9 | 9 | 18 | |
3 | 3 | 6 | ||
triplet | 1 | 2 | 3 | |
singlets | 2 | 0 | 2 | |
total | 15 | 14 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Négadi, T. Revealing the Genetic Code Symmetries through Computations Involving Fibonacci-like Sequences and Their Properties. Computation 2023, 11, 154. https://doi.org/10.3390/computation11080154
Négadi T. Revealing the Genetic Code Symmetries through Computations Involving Fibonacci-like Sequences and Their Properties. Computation. 2023; 11(8):154. https://doi.org/10.3390/computation11080154
Chicago/Turabian StyleNégadi, Tidjani. 2023. "Revealing the Genetic Code Symmetries through Computations Involving Fibonacci-like Sequences and Their Properties" Computation 11, no. 8: 154. https://doi.org/10.3390/computation11080154
APA StyleNégadi, T. (2023). Revealing the Genetic Code Symmetries through Computations Involving Fibonacci-like Sequences and Their Properties. Computation, 11(8), 154. https://doi.org/10.3390/computation11080154