Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET
Abstract
1. Introduction
- Rather than carrying an “omnibus” study of adaptive penalized QR, we carry out a detailed study by distinguishing different types of high leverage points under different distribution scenarios
- –
- Collinearity influential points that comprise collinearity inducing and collinearity masking ones.
- –
- A “mixture” of collinearity and high leverage points that are not collinearity influential.
- Unlike the conditional mean regression estimator, which is a global one, the regression quantile estimator is a local one. Therefore, we suggest a -based estimator instead of () parameter-based estimator suggested in the literature to derive adaptive weights in extending - and -E- procedures to - and -- procedures, respectively.
- We further extend - and -- procedures to - and -- procedures using the same methodology.
- We carry a comparative study of these models using simulation studies and well-known data sets from the literature.
2. Quantile Regression
2.1. Variable Selection in Quantile Regression
2.1.1. Choice of Adaptive Weights for
2.2. Adaptive Penalized Weighted Quantile Regression
2.3. Asymptotic Properties
- (i)
- The regression errors , are , with th quantile zero and a continuous, positive density in a neighborhood of zero and F distributed [25]. NOTE: and , in the neighborhood of 0 and real quantile .
- (ii)
- Let , where for are known positive values that satisfy [14].
- (iii)
- Consider the design , such that there exists a positive definite matrix ∑, where withwhere and .
- Sparsity: ;
- converges asymptotically in limit to .
- (iv)
- As , .
- (v)
- The random errors are independent with the distribution function of . We assume that each is locally linear near zero (with a positive slope) and . Define , which is a convex function for each n and i.
- (vi)
- Assume that, for each , , where is a strictly convex function taking values in .
3. Simulation Study
3.1. Simulation Design Scenarios
- (i)
- —the well-behaved orthogonalized design matrix (where the initial unorthogonalized’s columns are generated from ) satisfy the condition . We first generate the response data, , where ∼ with and . We find the singular value decomposition of the design matrix , given by , where and are orthogonal with the diagonal entries of . The diagonal entries of are the eigenvalues of the design matrix . Finally, the design matrix is given by such that since is orthogonal. We use the design matrix as a baseline when comparing with scenarios –.
- (ii)
- /—the design matrix with the most extreme point by Euclidean distance moved 10 units in the X direction () and 100 units in the X direction . The resultant extreme points are collinearity inducing points for scenarios and (see Figure 1).
- (iii)
- /—the design matrix with the most and second most extreme points by Euclidean distance moved 10 and 100 units, respectively, in the X direction. The two extreme points have a masking effect on collinearity (see scenarios and in Figure 1).—a correlated design matrix case with high leverage points [14,30]. In , we partitioned the design matrix, , where the uncontaminated part, and the contaminated sub-matrix ( is the mean vector of ones and is an identity matrix). The exponential decay , for , generates the th entry of covariance matrix and is the mean vector of zeros. The design matrix has contamination points (using contamination rate of ) from observations.
3.2. Results
3.2.1. D1 under the t-Distribution
3.2.2. D2 and D4 under Normal Distribution
3.2.3. D3 and D5 under the Normal Distribution
3.2.4. D2 and D3 under the t-Distribution
3.2.5. D6 under the t-Distribution
3.3. Examples
3.4. The Jet-Turbine Engine Data
3.5. The Gunst and Mason Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| least squares | |
| least absolute deviation | |
| quantile regression | |
| east absolute shrinkage and selection operator | |
| E- | elastic net |
| smoothly clipped absolute deviation | |
| minimax concave penalty | |
| weighted quantile regression | |
| adaptive | |
| - | quantile regression adaptive |
| -- | quantile regression adaptive elastic net |
| - | weighted quantile regression |
| - | weighted quantile regression adaptive |
| -- | weighted quantile regression adaptive elastic net |
| minimum covariance determinant | |
| weighted regression | |
| regression quantile |
Appendix A
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D4: N-distribution | QR-LASSO | −0.03(1.40) | 5.50 | 3.49 | 0.44 | 0.02 | |
| QR-E-NET | −0.07(3.56) | 0.00 | 1.06 | 0.01 | 0.02 | ||
| QR-ALASSO | 0.00(1.37) | 88.50 | 5.00 | 0.15 | 0.01 | ||
| QR-AE-NET | −0.03(3.45) | 55.00 | 4.00 | 0.02 | 0.02 | ||
| QR-LASSO | −1.31(6.57) | 5.00 | 3.46 | 0.64 | 0.02 | ||
| QR-E-NET | −0.78(5.30) | 0.00 | 1.60 | 0.36 | 0.02 | ||
| QR-ALASSO | −1.21(7.80) | 0.00 | 4.97 | 1.62 | 0.00 | ||
| QR-AE-NET | −0.27(5.07) | 0.00 | 4.31 | 1.50 | 0.01 | ||
| WQR-LASSO | 0.00(0.85) | 67.50 | 4.58 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.00(0.90) | 33.00 | 4.05 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.02(0.74) | 98.00 | 4.99 | 0.01 | 0.03 | ||
| WQR-AE-NET | 0.01(0.82) | 94.50 | 4.95 | 0.01 | 0.06 | ||
| WQR-LASSO | −0.04(2.33) | 32.50 | 4.64 | 0.59 | 0.04 | ||
| WQR-E-NET | −0.06(2.34) | 20.50 | 4.01 | 0.42 | 0.04 | ||
| WQR-ALASSO | 0.02(2.10) | 17.50 | 4.97 | 1.21 | 0.01 | ||
| WQR-AE-NET | 0.02(2.20) | 15.50 | 4.95 | 1.26 | 0.02 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D5: N-distribution | QR-LASSO | 2.68(4.14) | 12.00 | 5.00 | 1.89 | 0.01 | |
| QR-E-NET | 3.27(4.67) | 0.00 | 4.94 | 2.94 | 0.04 | ||
| QR-ALASSO | 1.15(1.85) | 74.00 | 5.00 | 0.30 | 0.01 | ||
| QR-AE-NET | 3.26(4.65) | 0.00 | 5.00 | 2.87 | 0.04 | ||
| QR-LASSO | 3.61(5.43) | 1.00 | 5.00 | 2.57 | 0.05 | ||
| QR-E-NET | 3.68(5.45) | 0.00 | 4.94 | 2.87 | 0.04 | ||
| QR-ALASSO | 3.42(5.20) | 12.50 | 5.00 | 2.03 | 0.00 | ||
| QR-AE-NET | 3.54(5.47) | 0.00 | 4.98 | 2.94 | 0.00 | ||
| WQR-LASSO | 0.50(0.82) | 71.00 | 4.61 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.53(0.82) | 46.00 | 4.23 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.51(0.75) | 99.50 | 5.00 | 0.01 | 0.04 | ||
| WQR-AE-NET | 0.52(0.79) | 99.50 | 5.00 | 0.01 | 0.06 | ||
| WQR-LASSO | 1.57(2.39) | 36.50 | 4.64 | 0.55 | 0.04 | ||
| WQR-E-NET | 1.67(2.46) | 27.50 | 4.24 | 0.43 | 0.04 | ||
| WQR-ALASSO | 1.58(2.36) | 41.50 | 4.96 | 0.67 | 0.02 | ||
| WQR-AE-NET | 1.71(2.42) | 50.50 | 4.97 | 0.54 | 0.03 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D2: t-distribution | QR-LASSO | −0.01(1.27) | 11.50 | 3.31 | 0.00 | 0.02 | |
| QR-E-NET | −0.02(1.60) | 0.00 | 1.89 | 0.00 | 0.02 | ||
| QR-ALASSO | 0.03(1.23) | 87.00 | 4.87 | 0.00 | 0.02 | ||
| QR-AE-NET | 0.05(1.45) | 0.00 | 3.05 | 0.00 | 0.03 | ||
| QR-LASSO | −0.02(0.61) | 10.50 | 3.32 | 0.00 | 0.03 | ||
| QR-E-NET | 0.00(0.84) | 0.00 | 1.94 | 0.00 | 0.02 | ||
| QR-ALASSO | −0.02(0.61) | 97.00 | 4.97 | 0.00 | 0.02 | ||
| QR-AE-NET | 0.01(0.77) | 0.00 | 3.00 | 0.00 | 0.03 | ||
| WQR-LASSO | −0.03(0.83) | 48.00 | 4.29 | 0.00 | 0.04 | ||
| WQR-E-NET | −0.03(0.86) | 3.00 | 2.69 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.03(0.84) | 99.50 | 5.00 | 0.00 | 0.04 | ||
| WQR-AE-NET | 0.02(0.88) | 84.50 | 4.84 | 0.00 | 0.06 | ||
| WQR-LASSO | 0.00(0.41) | 39.50 | 4.16 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.00(0.43) | 3.00 | 2.78 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.01(0.42) | 99.50 | 5.00 | 0.00 | 0.05 | ||
| WQR-AE-NET | 0.01(0.43) | 95.50 | 4.96 | 0.00 | 0.08 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D3: t-distribution | QR-LASSO | 0.82(1.29) | 3.50 | 2.91 | 0.02 | 0.01 | |
| QR-E-NET | 1.57(2.23) | 0.00 | 0.17 | 0.00 | 0.01 | ||
| QR-ALASSO | 0.81(1.24) | 96.50 | 4.97 | 0.00 | 0.03 | ||
| QR-AE-NET | 1.06(1.53) | 0.00 | 3.00 | 0.00 | 0.03 | ||
| QR-LASSO | 0.37(0.66) | 4.00 | 2.84 | 0.00 | 0.01 | ||
| QR-E-NET | 1.04(1.66) | 0.00 | 0.14 | 0.00 | 0.01 | ||
| QR-ALASSO | 0.40(0.64) | 100.00 | 5.00 | 0.00 | 0.03 | ||
| QR-AE-NET | 0.79(1.09) | 0.00 | 3.00 | 0.00 | 0.05 | ||
| WQR-LASSO | 0.40(0.76) | 49.00 | 4.28 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.42(0.77) | 4.50 | 2.89 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.54(0.89) | 91.50 | 4.91 | 0.01 | 0.03 | ||
| WQR-AE-NET | 0.59(0.95) | 64.00 | 4.55 | 0.00 | 0.04 | ||
| WQR-LASSO | 0.19(0.36) | 43.00 | 4.25 | 0.00 | 0.05 | ||
| WQR-E-NET | 0.22(0.38) | 3.50 | 2.77 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.27(0.45) | 96.50 | 4.97 | 0.00 | 0.04 | ||
| WQR-AE-NET | 0.30(0.47) | 82.00 | 4.80 | 0.00 | 0.06 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D6: t-distribution | QR-LASSO | 0.05(1.26) | 51.00 | 4.35 | 0.00 | 0.05 | |
| QR-E-NET | 0.03(1.30) | 1.50 | 2.29 | 0.00 | 0.04 | ||
| QR-ALASSO | 0.03(1.22) | 99.50 | 5.00 | 0.00 | 0.04 | ||
| QR-AE-NET | 0.05(1.28) | 51.50 | 4.51 | 0.00 | 0.07 | ||
| QR-LASSO | 0.00(0.64) | 72.50 | 4.65 | 0.00 | 0.05 | ||
| QR-E-NET | 0.01(0.67) | 5.00 | 3.00 | 0.00 | 0.04 | ||
| QR-ALASSO | 0.00(0.63) | 96.50 | 4.96 | 0.00 | 0.04 | ||
| QR-AE-NET | 0.00(0.64) | 24.50 | 4.00 | 0.00 | 0.06 | ||
| WQR-LASSO | 0.01(0.87) | 55.50 | 4.45 | 0.00 | 0.04 | ||
| WQR-E-NET | −0.01(0.89) | 6.00 | 3.23 | 0.00 | 0.04 | ||
| WQR-ALASSO | −0.01(0.63) | 94.50 | 4.93 | 0.00 | 0.04 | ||
| WQR-AE-NET | −0.01(0.66) | 23.00 | 3.91 | 0.00 | 0.05 | ||
| WQR-LASSO | −0.01(0.44) | 44.00 | 4.19 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.00(0.47) | 5.00 | 3.13 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.00(0.37) | 99.00 | 4.99 | 0.00 | 0.05 | ||
| WQR-AE-NET | 0.00(0.37) | 85.00 | 4.85 | 0.00 | 0.07 | ||
References
- Chatterjee, S.; Hadi, A.S. Impact of simultaneous omission of a variable and an observation on a linear regression equation. Comput. Stat. Data Anal. 1988, 6, 129–144. [Google Scholar] [CrossRef]
- Bloomfield, P.; Steiger, W. Least absolute deviations curve-fitting. SIAM J. Sci. Stat. Comput. 1980, 1, 290–301. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 33–50. [Google Scholar] [CrossRef]
- Breiman, L. Better subset regression using the nonnegative garrote. Technometrics 1995, 37, 373–384. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, B. On model selection consistency of Lasso. J. Mach. Learn. Res. 2006, 7, 2541–2563. [Google Scholar]
- Fan, J.; Li, R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef]
- Karunamuni, R.J.; Kong, L.; Tu, W. Efficient robust doubly adaptive regularized regression with applications. Stat. Methods Med. Res. 2019, 28, 2210–2226. [Google Scholar] [CrossRef] [PubMed]
- Salibián-Barrera, M.; Wei, Y. Weighted quantile regression with nonelliptically structured covariates. Can. J. Stat. 2008, 36, 595–611. [Google Scholar] [CrossRef]
- Ranganai, E.; Mudhombo, I. Variable Selection and Regularization in Quantile Regression via Minimum Covariance Determinant Based Weights. Entropy 2021, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Peng, H. Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 2004, 32, 928–961. [Google Scholar] [CrossRef]
- Zou, H. The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Frommlet, F.; Nuel, G. An adaptive ridge procedure for l0 regularization. PLoS ONE 2016, 11, e0148620. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y. Variable selection in quantile regression. Stat. Sin. 2009, 19, 801–817. [Google Scholar]
- Zou, H.; Zhang, H.H. On the adaptive elastic-net with a diverging number of parameters. Ann. Stat. 2009, 37, 1733. [Google Scholar] [CrossRef]
- Rousseeuw, P. Multivariate Estimation with High Breakdown Point. Math. Stat. Appl. 1985, 8, 283–297. [Google Scholar] [CrossRef]
- Zhao, Q. Restricted regression quantiles. J. Multivar. Anal. 2000, 72, 78–99. [Google Scholar] [CrossRef]
- Ranganai, E. Aspects of Model Development Using Regression Quantiles and Elemental Regressions. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2007. [Google Scholar]
- Giloni, A.; Simonoff, J.S.; Sengupta, B. Robust weighted LAD regression. Comput. Stat. Data Anal. 2006, 50, 3124–3140. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J. Robust regression with both continuous and binary regressors. J. Stat. Plan. Inference 1997, 57, 153–163. [Google Scholar] [CrossRef]
- Pollard, D. Asymptotics for Least Absolute Deviation Regression Estimators. Econom. Theory 1991, 7, 186–199. [Google Scholar] [CrossRef]
- Knight, K. Asymptotics for L1-estimators of regression parameters under heteroscedasticityY. Can. J. Stat. 1999, 27, 497–507. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Econometric Society Monographs, Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Jongh, P.J.D.; de Wet, T.; Welsh, A.H. Mallows-Type Bounded-Influence-Regression Trimmed Means. J. Am. Stat. Assoc. 1988, 83, 805–810. [Google Scholar] [CrossRef][Green Version]
- Ranganai, E.; Vuuren, J.O.V.; Wet, T.D. Multiple Case High Leverage Diagnosis in Regression Quantiles. Commun. Stat.-Theory Methods 2014, 43, 3343–3370. [Google Scholar] [CrossRef]
- Arslan, O. Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression. Comput. Stat. Data Anal. 2012, 56, 1952–1965. [Google Scholar] [CrossRef]
- Yi, C. R-Add-On-Software: Hqreg. Available online: https://cloud.r-project.org/web/packages/hqreg (accessed on 20 February 2022).
- Brownlee, K.A. Statistical theory and methodology in science and engineering. In A Wiley Publication in Applied Statistics; Wiley: Hoboken, NJ, USA, 1965. [Google Scholar]
- Ruppert, D.; Carroll, R.J. Trimmed least squares estimation in the linear model. J. Am. Stat. Assoc. 1980, 75, 828–838. [Google Scholar] [CrossRef]
- Cook, R.D. Influential Observations in Linear Regression. J. Am. Stat. Assoc. 1979, 74, 169–174. [Google Scholar] [CrossRef]


| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D1: N-distribution | QR-LASSO | 0.72(1.17) | 62.00 | 4.40 | 0.00 | 0.04 | |
| QR-E-NET | 0.75(1.26) | 16.50 | 3.35 | 0.00 | 0.03 | ||
| QR-ALASSO | 0.71(1.10) | 99.50 | 5.00 | 0.00 | 0.03 | ||
| QR-AE-NET | 0.75(1.16) | 97.00 | 4.97 | 0.00 | 0.05 | ||
| QR-LASSO | 2.20(3.60) | 44.00 | 4.39 | 0.28 | 0.04 | ||
| QR-E-NET | 2.29(3.68) | 27.00 | 3.83 | 0.14 | 0.04 | ||
| QR-ALASSO | 2.15(3.38) | 60.00 | 4.95 | 0.46 | 0.01 | ||
| QR-AE-NET | 2.28(3.54) | 67.50 | 4.90 | 0.28 | 0.01 | ||
| QR-LASSO | 0.02(1.16) | 65.50 | 4.51 | 0.00 | 0.04 | ||
| QR-E-NET | 0.02(1.19) | 21.00 | 3.56 | 0.00 | 0.04 | ||
| QR-ALASSO | 0.01(1.13) | 100.00 | 5.00 | 0.00 | 0.04 | ||
| QR-AE-NET | 0.01(1.17) | 100.00 | 5.00 | 0.00 | 0.06 | ||
| QR-LASSO | 0.09(3.47) | 47.50 | 4.51 | 0.22 | 0.05 | ||
| QR-E-NET | 0.06(3.62) | 32.50 | 3.99 | 0.09 | 0.04 | ||
| QR-ALASSO | 0.06(3.41) | 49.00 | 4.90 | 0.55 | 0.02 | ||
| QR-AE-NET | 0.05(3.51) | 60.50 | 4.85 | 0.30 | 0.03 | ||
| D1: t-distribution | QR-LASSO | 2.32(3.81) | 30.50 | 4.96 | 1.66 | 0.04 | |
| QR-E-NET | 2.55(3.87) | 29.50 | 4.77 | 1.46 | 0.03 | ||
| QR-ALASSO | 2.36(3.78) | 11.50 | 4.97 | 1.95 | 0.00 | ||
| QR-AE-NET | 2.52(3.93) | 12.50 | 4.94 | 1.86 | 0.00 | ||
| QR-LASSO | 4.70(7.15) | 1.50 | 5.00 | 2.93 | 0.06 | ||
| QR-E-NET | 4.72(7.14) | 1.50 | 4.99 | 2.91 | 0.05 | ||
| QR-ALASSO | 4.68(7.12) | 0.50 | 4.99 | 2.93 | 0.00 | ||
| QR-AE-NET | 4.72(7.17) | 0.50 | 5.00 | 2.94 | 0.00 | ||
| QR-LASSO | 0.03(2.91) | 40.50 | 4.96 | 1.27 | 0.04 | ||
| QR-E-NET | 0.02(3.27) | 29.00 | 4.64 | 1.10 | 0.03 | ||
| QR-ALASSO | −0.07(3.24) | 32.50 | 4.99 | 1.56 | 0.00 | ||
| QR-AE-NET | −0.05(3.43) | 37.00 | 4.93 | 1.38 | 0.00 | ||
| QR-LASSO | −0.14(6.89) | 1.50 | 4.99 | 2.85 | 0.05 | ||
| QR-E-NET | −0.14(6.91) | 1.00 | 4.97 | 2.84 | 0.05 | ||
| QR-ALASSO | −0.14(6.84) | 0.50 | 5.00 | 2.86 | 0.00 | ||
| QR-AE-NET | −0.13(6.90) | 2.00 | 4.99 | 2.85 | 0.00 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D2: N-distribution | QR-LASSO | −1.10(5.65) | 38.00 | 4.00 | 0.01 | 0.03 | |
| QR-E-NET | −0.93(5.55) | 2.50 | 2.55 | 0.00 | 0.02 | ||
| QR-ALASSO | −1.08(5.60) | 91.50 | 4.92 | 0.01 | 0.02 | ||
| QR-AE-NET | −0.36(5.01) | 81.50 | 4.81 | 0.00 | 0.03 | ||
| QR-LASSO | 0.96(6.30) | 17.50 | 4.23 | 0.43 | 0.02 | ||
| QR-E-NET | 1.25(5.85) | 9.50 | 3.39 | 0.16 | 0.02 | ||
| QR-ALASSO | 0.90(6.45) | 56.50 | 4.98 | 0.48 | 0.01 | ||
| QR-AE-NET | 1.35(5.64) | 72.50 | 4.93 | 0.22 | 0.02 | ||
| WQR-LASSO | −1.48(4.49) | 62.50 | 4.47 | 0.00 | 0.03 | ||
| WQR-E-NET | −1.56(4.61) | 11.00 | 3.34 | 0.00 | 0.03 | ||
| WQR-ALASSO | −1.69(4.44) | 94.50 | 4.95 | 0.01 | 0.04 | ||
| WQR-AE-NET | −1.60(4.26) | 92.00 | 4.92 | 0.00 | 0.06 | ||
| WQR-LASSO | 0.50(4.63) | 29.50 | 4.53 | 0.62 | 0.03 | ||
| WQR-E-NET | 0.76(4.31) | 28.00 | 4.34 | 0.54 | 0.04 | ||
| WQR-ALASSO | 1.47(2.50) | 57.50 | 4.89 | 0.44 | 0.01 | ||
| WQR-AE-NET | 1.50(2.53) | 53.00 | 4.76 | 0.38 | 0.01 | ||
| QR-LASSO | −1.87(5.78) | 36.00 | 3.83 | 0.01 | 0.02 | ||
| QR-E-NET | -1.91(5.72) | 0.00 | 1.94 | 0.00 | 0.02 | ||
| QR-ALASSO | −1.91(5.76) | 98.50 | 4.99 | 0.00 | 0.03 | ||
| QR-AE-NET | −1.61(5.17) | 94.00 | 4.94 | 0.00 | 0.05 | ||
| QR-LASSO | −1.41(6.56) | 21.00 | 3.99 | 0.28 | 0.03 | ||
| QR-E-NET | −1.34(6.21) | 4.50 | 2.53 | 0.09 | 0.02 | ||
| QR-ALASSO | −1.53(6.65) | 60.00 | 4.78 | 0.25 | 0.02 | ||
| QR-AE-NET | −1.17(5.97) | 34.50 | 4.19 | 0.07 | 0.02 | ||
| WQR-LASSO | −2.22(4.24) | 66.50 | 4.57 | 0.00 | 0.04 | ||
| WQR-E-NET | −2.04(4.39) | 30.00 | 3.86 | 0.00 | 0.04 | ||
| WQR-ALASSO | −2.28(4.37) | 99.50 | 5.00 | 0.00 | 0.04 | ||
| WQR-AE-NET | −2.20(4.27) | 99.00 | 4.99 | 0.00 | 0.06 | ||
| WQR-LASSO | −1.06(4.49) | 36.50 | 4.69 | 0.54 | 0.04 | ||
| WQR-E-NET | −0.99(4.28) | 28.00 | 4.34 | 0.37 | 0.05 | ||
| WQR-ALASSO | −0.01(2.39) | 46.50 | 4.85 | 0.48 | 0.01 | ||
| WQR-AE-NET | −0.03(2.49) | 36.00 | 4.61 | 0.39 | 0.01 | ||
| D4: N-distribution | QR-LASSO | 0.97(1.65) | 10.00 | 3.88 | 0.61 | 0.02 | |
| QR-E-NET | 2.74(3.71) | 1.00 | 1.69 | 0.16 | 0.01 | ||
| QR-ALASSO | 0.88(1.50) | 65.00 | 5.00 | 0.42 | 0.01 | ||
| QR-AE-NET | 2.41(3.44) | 41.00 | 4.54 | 0.16 | 0.01 | ||
| QR-LASSO | 1.67(6.06) | 3.50 | 4.07 | 1.26 | 0.02 | ||
| QR-E-NET | 2.64(5.30) | 0.00 | 2.25 | 0.75 | 0.01 | ||
| QR-ALASSO | 2.60(7.05) | 0.00 | 4.32 | 1.69 | 0.00 | ||
| QR-AE-NET | 2.83(5.13) | 0.00 | 2.86 | 1.19 | 0.00 | ||
| WQR-LASSO | 0.47(0.78) | 64.50 | 4.51 | 0.00 | 0.03 | ||
| WQR-E-NET | 0.49(0.85) | 30.00 | 3.96 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.52(0.77) | 99.50 | 5.00 | 0.00 | 0.03 | ||
| WQR-AE-NET | 0.56(0.78) | 99.00 | 4.99 | 0.00 | 0.05 | ||
| WQR-LASSO | 1.37(2.31) | 15.00 | 4.46 | 1.09 | 0.04 | ||
| WQR-E-NET | 1.52(2.38) | 35.00 | 4.29 | 0.28 | 0.04 | ||
| WQR-ALASSO | 1.85(2.63) | 0.00 | 5.00 | 1.58 | 0.01 | ||
| WQR-AE-NET | 1.93(2.72) | 0.00 | 4.96 | 1.51 | 0.02 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D3: N-distribution | QR-LASSO | 0.65(1.21) | 60.50 | 4.45 | 0.00 | 0.01 | |
| QR-E-NET | 0.81(1.46) | 12.50 | 3.48 | 0.00 | 0.01 | ||
| QR-ALASSO | 0.79(1.21) | 96.50 | 5.00 | 0.06 | 0.02 | ||
| QR-AE-NET | 0.87(1.35) | 99.00 | 5.00 | 0.01 | 0.02 | ||
| QR-LASSO | 2.01(3.79) | 42.50 | 4.48 | 0.35 | 0.01 | ||
| QR-E-NET | 2.47(4.20) | 17.50 | 3.97 | 0.43 | 0.01 | ||
| QR-ALASSO | 2.17(3.49) | 74.50 | 4.75 | 0.19 | 0.00 | ||
| QR-AE-NET | 2.74(4.16) | 44.50 | 4.48 | 0.42 | 0.00 | ||
| WQR-LASSO | 0.48(0.91) | 28.50 | 3.83 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.41(0.77) | 15.50 | 3.59 | 0.00 | 0.03 | ||
| WQR-ALASSO | 0.48(0.70) | 98.00 | 4.99 | 0.01 | 0.04 | ||
| WQR-AE-NET | 0.50(0.82) | 98.50 | 4.99 | 0.01 | 0.04 | ||
| WQR-LASSO | 1.25(2.12) | 29.00 | 4.39 | 0.57 | 0.03 | ||
| WQR-E-NET | 1.46(2.31) | 24.50 | 4.21 | 0.42 | 0.04 | ||
| WQR-ALASSO | 0.24(4.81) | 40.00 | 4.90 | 0.77 | 0.02 | ||
| WQR-AE-NET | 0.67(4.38) | 44.00 | 4.86 | 0.68 | 0.04 | ||
| QR-LASSO | −0.01(1.19) | 62.50 | 4.48 | 0.00 | 0.02 | ||
| QR-E-NET | −0.04(1.39) | 12.50 | 3.45 | 0.00 | 0.02 | ||
| QR-ALASSO | 0.02(1.15) | 99.50 | 5.00 | 0.00 | 0.02 | ||
| QR-AE-NET | −0.01(1.43) | 97.50 | 4.98 | 0.00 | 0.03 | ||
| QR-LASSO | −0.08(3.61) | 53.00 | 4.54 | 0.30 | 0.02 | ||
| QR-E-NET | −0.10(4.02) | 11.00 | 3.92 | 0.54 | 0.01 | ||
| QR-ALASSO | 0.06(3.55) | 74.00 | 4.80 | 0.10 | 0.00 | ||
| QR-AE-NET | 0.05(3.96) | 18.50 | 4.17 | 0.35 | 0.00 | ||
| WQR-LASSO | −0.01(0.67) | 71.50 | 4.65 | 0.00 | 0.04 | ||
| WQR-E-NET | −0.01(0.77) | 35.00 | 3.96 | 0.00 | 0.05 | ||
| WQR-ALASSO | 0.01(0.78) | 100.00 | 5.00 | 0.00 | 0.04 | ||
| WQR-AE-NET | 0.01(0.81) | 100.00 | 5.00 | 0.00 | 0.07 | ||
| WQR-LASSO | −0.05(2.27) | 39.50 | 4.66 | 0.48 | 0.04 | ||
| WQR-E-NET | −0.05(2.30) | 31.50 | 4.38 | 0.35 | 0.04 | ||
| WQR-ALASSO | −1.04(4.52) | 51.00 | 4.96 | 0.72 | 0.03 | ||
| WQR-AE-NET | −0.94(4.15) | 63.00 | 4.98 | 0.48 | 0.04 | ||
| D5: N-distribution | QR-LASSO | −0.06(2.34) | 54.50 | 4.98 | 0.80 | 0.00 | |
| QR-E-NET | −0.02(4.67) | 0.00 | 4.97 | 2.91 | 0.09 | ||
| QR-ALASSO | 0.01(1.46) | 95.50 | 5.00 | 0.07 | 0.00 | ||
| QR-AE-NET | 0.00(4.66) | 0.00 | 4.99 | 2.87 | 0.09 | ||
| QR-LASSO | 0.08(5.40) | 11.50 | 4.98 | 2.56 | 0.01 | ||
| QR-E-NET | −0.03(5.42) | 0.00 | 4.96 | 2.92 | 0.09 | ||
| QR-ALASSO | 0.07(4.74) | 26.50 | 5.00 | 1.70 | 0.00 | ||
| QR-AE-NET | −0.02(5.47) | 0.00 | 4.99 | 2.95 | 0.01 | ||
| WQR-LASSO | 0.01(0.70) | 68.50 | 4.61 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.01(0.69) | 34.50 | 3.95 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.01(0.72) | 100.00 | 5.00 | 0.00 | 0.04 | ||
| WQR-AE-NET | 0.00(0.73) | 98.00 | 4.98 | 0.00 | 0.06 | ||
| WQR-LASSO | 0.04(2.26) | 42.00 | 4.72 | 0.47 | 0.04 | ||
| WQR-E-NET | 0.03(2.26) | 29.00 | 4.35 | 0.38 | 0.05 | ||
| WQR-ALASSO | 0.00(2.28) | 17.50 | 4.99 | 0.91 | 0.01 | ||
| WQR-AE-NET | −0.01(2.39) | 13.00 | 5.00 | 0.93 | 0.02 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D2: t-distribution | QR-LASSO | 2.49(4.51) | 1.50 | 4.26 | 1.50 | 0.02 | |
| QR-E-NET | 3.26(5.05) | 0.00 | 2.79 | 1.32 | 0.02 | ||
| QR-ALASSO | 2.43(3.87) | 24.00 | 4.93 | 1.52 | 0.01 | ||
| QR-AE-NET | 2.71(4.29) | 0.00 | 3.03 | 0.78 | 0.01 | ||
| QR-LASSO | 1.08(2.02) | 15.50 | 4.05 | 0.54 | 0.02 | ||
| QR-E-NET | 1.75(3.09) | 0.00 | 1.30 | 0.20 | 0.02 | ||
| QR-ALASSO | 1.16(2.16) | 52.00 | 4.88 | 0.76 | 0.02 | ||
| QR-AE-NET | 1.45(2.38) | 0.50 | 3.27 | 0.32 | 0.03 | ||
| WQR-LASSO | 1.57(2.51) | 21.50 | 4.85 | 1.65 | 0.04 | ||
| WQR-E-NET | 1.61(2.60) | 4.00 | 4.35 | 1.55 | 0.04 | ||
| WQR-ALASSO | 1.49(2.63) | 8.00 | 4.79 | 2.12 | 0.00 | ||
| WQR-AE-NET | 1.60(2.71) | 1.00 | 4.57 | 2.16 | 0.00 | ||
| WQR-LASSO | 0.81(1.41) | 46.50 | 4.74 | 0.82 | 0.04 | ||
| WQR-E-NET | 0.89(1.56) | 5.00 | 3.77 | 0.74 | 0.04 | ||
| WQR-ALASSO | 0.70(1.33) | 55.00 | 5.00 | 0.95 | 0.02 | ||
| WQR-AE-NET | 0.79(1.42) | 51.00 | 4.90 | 0.88 | 0.03 | ||
| QR-LASSO | 0.00(3.64) | 3.00 | 3.97 | 1.20 | 0.02 | ||
| QR-E-NET | −0.01(4.32) | 0.00 | 2.67 | 0.92 | 0.02 | ||
| QR-ALASSO | 0.08(3.26) | 42.50 | 4.97 | 1.16 | 0.01 | ||
| QR-AE-NET | 0.02(3.85) | 0.50 | 3.34 | 0.74 | 0.01 | ||
| QR-LASSO | −0.02(1.70) | 30.00 | 4.37 | 0.53 | 0.03 | ||
| QR-E-NET | 0.01(2.49) | 0.00 | 1.64 | 0.27 | 0.02 | ||
| QR-ALASSO | 0.04(1.64) | 77.00 | 5.00 | 0.54 | 0.02 | ||
| QR-AE-NET | 0.01(1.98) | 2.00 | 3.34 | 0.33 | 0.02 | ||
| WQR-LASSO | 0.03(2.21) | 29.50 | 4.73 | 1.14 | 0.04 | ||
| WQR-E-NET | 0.02(2.30) | 9.00 | 4.11 | 1.00 | 0.04 | ||
| WQR-ALASSO | 0.02(2.21) | 30.50 | 4.94 | 1.52 | 0.01 | ||
| WQR-AE-NET | 0.05(2.30) | 17.00 | 4.58 | 1.40 | 0.01 | ||
| WQR-LASSO | 0.01(1.15) | 51.50 | 4.67 | 0.51 | 0.04 | ||
| WQR-E-NET | 0.01(1.25) | 7.00 | 3.51 | 0.46 | 0.04 | ||
| WQR-ALASSO | 0.00(1.11) | 67.00 | 5.00 | 0.66 | 0.04 | ||
| WQR-AE-NET | 0.00(1.22) | 69.50 | 4.98 | 0.59 | 0.07 | ||
| D2: t-distribution | QR-LASSO | 0.82(1.30) | 14.00 | 3.40 | 0.01 | 0.02 | |
| QR-E-NET | 1.18(1.80) | 0.00 | 1.90 | 0.00 | 0.02 | ||
| QR-ALASSO | 0.84(1.30) | 90.00 | 4.90 | 0.01 | 0.02 | ||
| QR-AE-NET | 1.04(1.53) | 0.00 | 2.91 | 0.00 | 0.02 | ||
| QR-LASSO | 0.40(0.64) | 16.00 | 3.51 | 0.01 | 0.02 | ||
| QR-E-NET | 0.62(1.02) | 0.00 | 1.90 | 0.00 | 0.02 | ||
| QR-ALASSO | 0.38(0.63) | 98.00 | 4.98 | 0.00 | 0.02 | ||
| QR-AE-NET | 0.63(1.03) | 0.00 | 2.28 | 0.00 | 0.02 | ||
| WQR-LASSO | 0.50(0.97) | 42.00 | 4.10 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.51(1.00) | 1.50 | 2.72 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.55(0.91) | 92.00 | 4.92 | 0.01 | 0.03 | ||
| WQR-AE-NET | 0.60(0.97) | 56.50 | 4.45 | 0.00 | 0.04 | ||
| WQR-LASSO | 0.26(0.49) | 31.00 | 3.92 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.27(0.51) | 2.50 | 2.62 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.28(0.45) | 98.50 | 4.99 | 0.00 | 0.04 | ||
| WQR-AE-NET | 0.30(0.49) | 83.50 | 4.82 | 0.00 | 0.05 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D3: t-distribution | QR-LASSO | 1.32(2.39) | 17.00 | 3.84 | 0.43 | 0.03 | |
| QR-E-NET | 2.07(3.49) | 0.00 | 1.77 | 0.30 | 0.02 | ||
| QR-ALASSO | 1.84(3.21) | 44.50 | 4.91 | 0.74 | 0.01 | ||
| QR-AE-NET | 2.23(3.39) | 2.50 | 3.69 | 0.29 | 0.02 | ||
| QR-LASSO | 0.77(1.28) | 56.00 | 4.55 | 0.25 | 0.03 | ||
| QR-E-NET | 1.75(2.65) | 0.00 | 2.17 | 0.20 | 0.02 | ||
| QR-ALASSO | 0.90(1.56) | 84.50 | 4.99 | 0.27 | 0.03 | ||
| QR-AE-NET | 1.44(2.04) | 2.00 | 4.01 | 0.18 | 0.04 | ||
| WQR-LASSO | 1.50(2.62) | 37.00 | 4.96 | 1.51 | 0.04 | ||
| WQR-E-NET | 1.61(2.78) | 17.00 | 4.45 | 1.36 | 0.04 | ||
| WQR-ALASSO | 1.57(2.57) | 21.50 | 4.99 | 1.78 | 0.02 | ||
| WQR-AE-NET | 1.62(2.58) | 22.50 | 4.93 | 1.61 | 0.03 | ||
| WQR-LASSO | 0.67(1.30) | 67.50 | 4.87 | 0.54 | 0.04 | ||
| WQR-E-NET | 0.77(1.47) | 24.00 | 3.91 | 0.47 | 0.04 | ||
| WQR-ALASSO | 0.88(1.52) | 55.50 | 4.99 | 0.91 | 0.03 | ||
| WQR-AE-NET | 0.91(1.56) | 55.50 | 4.88 | 0.77 | 0.04 | ||
| QR-LASSO | −0.02(2.39) | 28.50 | 4.30 | 0.46 | 0.06 | ||
| QR-E-NET | −0.07(3.56) | 1.00 | 1.52 | 0.25 | 0.02 | ||
| QR-ALASSO | 0.02(3.05) | 27.50 | 4.81 | 0.86 | 0.01 | ||
| QR-AE-NET | 0.04(3.43) | 0.00 | 3.08 | 0.48 | 0.02 | ||
| QR-LASSO | 0.01(1.23) | 63.00 | 4.71 | 0.31 | 0.04 | ||
| QR-E-NET | 0.00(2.15) | 0.00 | 2.08 | 0.21 | 0.02 | ||
| QR-ALASSO | 0.01(1.47) | 79.00 | 5.00 | 0.37 | 0.03 | ||
| QR-AE-NET | 0.00(2.12) | 3.50 | 3.81 | 0.24 | 0.03 | ||
| WQR-LASSO | −0.04(2.30) | 51.00 | 4.96 | 1.12 | 0.05 | ||
| WQR-E-NET | −0.03(2.48) | 21.00 | 4.21 | 0.96 | 0.05 | ||
| WQR-ALASSO | 0.02(2.29) | 24.50 | 4.99 | 1.46 | 0.01 | ||
| WQR-AE-NET | 0.05(2.36) | 20.00 | 4.90 | 1.31 | 0.02 | ||
| WQR-LASSO | −0.01(1.17) | 69.50 | 4.88 | 0.49 | 0.04 | ||
| WQR-E-NET | −0.01(1.29) | 10.50 | 3.36 | 0.40 | 0.04 | ||
| WQR-ALASSO | 0.01(1.16) | 69.50 | 5.00 | 0.61 | 0.03 | ||
| WQR-AE-NET | 0.02(1.26) | 73.50 | 4.98 | 0.50 | 0.05 | ||
| D3: t-distribution | QR-LASSO | 0.02(1.26) | 2.50 | 2.67 | 0.01 | 0.02 | |
| QR-E-NET | 0.00(2.48) | 0.00 | 0.02 | 0.02 | 0.02 | ||
| QR-ALASSO | 0.03(1.22) | 98.50 | 4.99 | 0.00 | 0.04 | ||
| QR-AE-NET | 0.01(1.77) | 0.00 | 3.36 | 0.00 | 0.04 | ||
| QR-LASSO | −0.02(0.64) | 1.50 | 2.62 | 0.0 | 0.01 | ||
| QR-E-NET | −0.07(2.03) | 0.00 | 0.01 | 0.00 | 0.02 | ||
| QR-ALASSO | 0.01(0.61) | 100.00 | 5.00 | 0.00 | 0.05 | ||
| QR-AE-NET | 0.00(1.11) | 0.00 | 4.00 | 0.00 | 0.05 | ||
| WQR-LASSO | −0.01(0.69) | 53.50 | 4.40 | 0.00 | 0.05 | ||
| WQR-E-NET | −0.01(0.73) | 7.00 | 2.84 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.01(0.84) | 98.50 | 4.99 | 0.00 | 0.04 | ||
| WQR-AE-NET | 0.01(0.88) | 81.00 | 4.81 | 0.00 | 0.07 | ||
| WQR-LASSO | 0.00(0.33) | 47.50 | 4.26 | 0.00 | 0.05 | ||
| WQR-E-NET | 0.00(0.36) | 4.00 | 2.84 | 0.00 | 0.05 | ||
| WQR-ALASSO | 0.01(0.42) | 99.50 | 5.00 | 0.00 | 0.05 | ||
| WQR-AE-NET | 0.01(0.43) | 93.00 | 4.93 | 0.00 | 0.08 | ||
| Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
|---|---|---|---|---|---|---|---|
| c.zero | inc.zero | ||||||
| D6: t-distribution | QR-LASSO | 2.54(4.43) | 22.50 | 4.71 | 1.34 | 0.04 | |
| QR-E-NET | 2.79(4.69) | 3.00 | 3.06 | 0.96 | 0.04 | ||
| QR-ALASSO | 2.43(4.26) | 19.50 | 4.74 | 1.19 | 0.02 | ||
| QR-AE-NET | 2.71(4.66) | 0.00 | 3.82 | 1.07 | 0.02 | ||
| QR-LASSO | 1.10(1.95) | 25.50 | 4.15 | 0.52 | 0.03 | ||
| QR-E-NET | 1.34(2.37) | 0.00 | 2.36 | 0.44 | 0.03 | ||
| QR-ALASSO | 1.15(2.14) | 37.00 | 4.73 | 0.77 | 0.03 | ||
| QR-AE-NET | 1.27(2.39) | 8.00 | 4.22 | 0.45 | 0.04 | ||
| WQR-LASSO | 1.63(3.05) | 14.00 | 4.66 | 1.52 | 0.04 | ||
| WQR-E-NET | 1.82(3.22) | 1.00 | 3.61 | 1.07 | 0.04 | ||
| WQR-ALASSO | 1.60(2.86) | 14.00 | 4.94 | 1.95 | 0.02 | ||
| WQR-AE-NET | 1.75(3.06) | 11.50 | 4.80 | 1.79 | 0.04 | ||
| WQR-LASSO | 1.08(1.99) | 67.00 | 4.80 | 0.38 | 0.04 | ||
| WQR-E-NET | 1.27(2.23) | 1.00 | 2.45 | 0.32 | 0.03 | ||
| WQR-ALASSO | 0.80(1.43) | 10.00 | 3.95 | 0.69 | 0.00 | ||
| WQR-AE-NET | 0.96(1.71) | 0.50 | 2.79 | 0.66 | 0.00 | ||
| QR-LASSO | −0.06(3.48) | 37.00 | 4.69 | 0.90 | 0.04 | ||
| QR-E-NET | −0.06(3.72) | 1.50 | 2.67 | 0.76 | 0.04 | ||
| QR-ALASSO | −0.02(3.45) | 41.50 | 4.91 | 0.87 | 0.02 | ||
| QR-AE-NET | 0.06(3.82) | 2.00 | 3.99 | 0.58 | 0.03 | ||
| QR-LASSO | −0.04(1.62) | 33.00 | 4.30 | 0.36 | 0.04 | ||
| QR-E-NET | 0.00(1.83) | 0.00 | 2.45 | 0.33 | 0.03 | ||
| QR-ALASSO | −0.01(1.81) | 64.50 | 4.96 | 0.63 | 0.04 | ||
| QR-AE-NET | 0.01(1.99) | 16.00 | 4.23 | 0.31 | 0.06 | ||
| WQR-LASSO | 0.04(2.47) | 26.00 | 4.65 | 1.09 | 0.04 | ||
| WQR-E-NET | 0.05(2.74) | 2.50 | 3.57 | 0.81 | 0.04 | ||
| WQR-ALASSO | −0.01(2.36) | 43.50 | 4.91 | 1.19 | 0.00 | ||
| WQR-AE-NET | 0.00(2.64) | 3.00 | 4.45 | 1.26 | 0.03 | ||
| WQR-LASSO | 0.02(1.52) | 58.50 | 4.67 | 0.33 | 0.04 | ||
| WQR-E-NET | 0.03(1.78) | 0.00 | 2.02 | 0.29 | 0.04 | ||
| WQR-ALASSO | −0.01(1.19) | 69.00 | 4.86 | 0.43 | 0.00 | ||
| WQR-AE-NET | 0.00(1.41) | 7.50 | 3.21 | 0.40 | 0.00 | ||
| D6: t-distribution | QR-LASSO | 0.82(1.25) | 53.50 | 4.26 | 0.00 | 0.04 | |
| QR-E-NET | 0.86(1.35) | 3.00 | 2.44 | 0.00 | 0.03 | ||
| QR-ALASSO | 0.81(1.25) | 96.00 | 4.96 | 0.00 | 0.03 | ||
| QR-AE-NET | 0.88(1.29) | 38.50 | 4.22 | 0.00 | 0.04 | ||
| QR-LASSO | 0.40(0.66) | 63.50 | 4.51 | 0.00 | 0.04 | ||
| QR-E-NET | 0.41(0.72) | 2.50 | 2.77 | 0.00 | 0.04 | ||
| QR-ALASSO | 0.38(0.62) | 97.50 | 4.97 | 0.00 | 0.03 | ||
| QR-AE-NET | 0.40(0.66) | 26.00 | 4.15 | 0.00 | 0.05 | ||
| WQR-LASSO | 0.54(0.92) | 43.00 | 4.23 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.55(0.96) | 2.00 | 3.07 | 0.00 | 0.04 | ||
| WQR-ALASSO | 0.37(0.69) | 98.00 | 4.98 | 0.00 | 0.03 | ||
| WQR-AE-NET | 0.40(0.73) | 59.00 | 4.52 | 0.00 | 0.05 | ||
| WQR-LASSO | 0.26(0.47) | 35.50 | 4.06 | 0.00 | 0.04 | ||
| WQR-E-NET | 0.25(0.51) | 5.00 | 3.16 | 0.00 | 0.03 | ||
| WQR-ALASSO | 0.25(0.42) | 99.50 | 5.00 | 0.00 | 0.04 | ||
| WQR-AE-NET | 0.27(0.43) | 83.50 | 4.84 | 0.00 | 0.06 | ||
| NON-BIASED | QR-LASSO | QR-E-NET | QR-ALASSO | QR-AE-NET | |||
|---|---|---|---|---|---|---|---|
| 0.01 | 0.01 | 0.07 | 0.02 | ||||
| intercept | −0.72 | −1.11(0.39) | −0.60(−0.12) | −0.69(−0.03) | −0.72(0.00) | −0.67(−0.05) | |
| 50.00 | 15.15(−34.85) | 33.20(−16.80) | 21.63(−28.37) | 17.55(−32.45) | 24.53(−25.47) | ||
| 0.00 | 84.78(84.78) | 10.34(10.34) | 14.14(14.14) | 26.40(26.40) | 27.17(27.17) | ||
| 0.00 | −89.20(−89.20) | 0.00(0.00) | 0.00(0.00) | −20.53(−20.53) | −26.10(−26.10) | ||
| 10.00 | 28.94(18.94) | 14.18(4.18) | 19.48(9.48) | 27.98(17.98) | 25.27(15.27) | ||
| 15.00 | 30.54(15.54) | 16.51(1.51) | 18.57(3.57) | 22.19(7.19) | 22.54(7.54) | ||
| 0.00 | 10.21(10.21) | −4.28(−4.28) | −4.75(−4.75) | −0.78(−0.78) | 0.57(0.57) | ||
| 0.08 | 0.03 | 0.32 | 0.10 | ||||
| intercept | 0.00 | 0.40(0.40) | 0.44(0.44) | 0.39(0.39) | 0.57(0.57) | 0.53(0.53) | |
| 50.00 | 38.47(−11.53) | 9.68(−40.32) | 16.28(−33.72) | 27.98(−22.02) | 16.09(−33.91) | ||
| 0.00 | 41.62(41.62) | 33.30(33.30) | 17.72(17.72) | 35.97(35.97) | 21.51(21.51) | ||
| 0.00 | −37.77(−37.77) | 0.00(0.00) | 8.14(8.14) | 0.00(0.00) | 0.00(0.00) | ||
| 10.00 | 12.73(2.73) | 21.57(11.57) | 18.00(8.00) | 5.43(−4.57) | 21.60(11.60) | ||
| 15.00 | 19.06(4.06) | 6.02(−8.98) | 12.42(−2.58) | 1.56(−13.44) | 13.52(−1.48) | ||
| 0.00 | 4.21(4.21) | 0.00(0.00) | −3.06(−3.06) | 0.00(0.00) | −0.90(−0.90) | ||
| WQR-LASSO | WQR-E-NET | WQR-ALASSO | WQR-AE-NET | ||||
| 0.01 | 0.01 | 0.00 | 0.00 | ||||
| intercept | −0.72 | −1.11(0.39) | −0.10(−0.62) | −0.08(−0.64) | −0.07(−0.65) | −0.23(−0.49) | |
| 50.00 | 15.15(−34.85) | 35.34(−14.66) | 26.98(−23.02) | 44.01(−5.99) | 51.84(1.84) | ||
| 0.00 | 84.78(84.78) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | −15.12(−15.12) | ||
| 0.00 | −89.20(−89.20) | 0.00(0.00) | 0.25(0.25) | 0.00(0.00) | −14.00(−14.00) | ||
| 10.00 | 28.94(18.94) | 16.13(6.13) | 22.52(12.52) | 10.23(0.23) | 20.28(10.28) | ||
| 15.00 | 30.54(15.54) | 25.85(10.85) | 27.79(12.79) | 23.02(8.02) | 35.00(20.00) | ||
| 0.00 | 10.21(10.21) | −9.56(−9.56) | −10.65(−10.65) | −8.81(−8.81) | −7.73(−7.73) | ||
| 0.04 | 0.00 | 0.97 | 0.42 | ||||
| intercept | 0.00 | 0.40(0.40) | 0.01(0.01) | 0.02(0.02) | 0.01(0.01) | 0.01(0.01) | |
| 50.00 | 38.47(−11.53) | 49.19(−0.81) | 41.15(−8.85) | 54.16(4.16) | 20.42(−29.58) | ||
| 0.00 | 41.62(41.62) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 10.97(10.97) | ||
| 0.00 | −37.77(−37.77) | 0.00(0.00) | −5.85(−5.85) | 0.00(0.00) | 6.34(6.34) | ||
| 10.00 | 12.73(2.73) | 0.00(−10.00) | 18.47(8.47) | 0.80(−9.20) | 17.20(7.20) | ||
| 15.00 | 19.06(4.06) | 14.63(−0.37) | 21.20(6.20) | 18.96(3.96) | 18.26(3.26) | ||
| 0.00 | 4.21(4.21) | 0.00(0.00) | 4.58(4.58) | 0.00(0.00) | 0.00(0.00) |
| NON-BIASED | QR-LASSO | QR-E-NET | QR-ALASSO | QR-AE-NET | |||
|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | 0.01 | 0.00 | ||||
| intercept | −0.72 | 0.38(−1.10) | −0.85(0.13) | −0.85(0.13) | −0.98(0.26) | −0.69(0.03) | |
| 0.00 | −0.14(0.14) | −0.02(0.02) | 0.00(0.00) | 0.00(0.00) | −0.19(0.19) | ||
| 8.00 | 9.29(−1.29) | 4.37(3.63) | 4.89(3.11) | 2.97(5.03) | 7.73(0.27) | ||
| −13.00 | −10.97(−2.03) | 0.00(−13.00) | −2.00(−11.00) | −6.35(−6.65) | −9.59(−3.41) | ||
| 0.00 | 11.54(−11.54) | 0.87(−0.87) | 3.01(−3.01) | 6.68(−6.68) | 10.09(−10.09) | ||
| 0.00 | 6.21(−6.21) | 1.62(−1.62) | 2.09(−2.09) | 0.00(0.00) | 4.90(−4.90) | ||
| 6.00 | 1.61(4.39) | 2.22(3.78) | 2.19(3.81) | 3.30(2.70) | 1.74(4.26) | ||
| 0.01 | 0.02 | 0.01 | 0.01 | ||||
| intercept | 0.00 | 0.44(−0.44) | 0.03(−0.03) | 0.03(−0.03) | 0.14(−0.14) | 0.07(-0.07) | |
| 0.00 | 0.72(−0.72) | 0.40(−0.40) | 0.41(−0.41) | 0.00(0.00) | 0.00(0.00) | ||
| 8.00 | 9.87(−1.87) | 10.13(−2.13) | 10.13(−2.13) | 7.83(0.17) | 8.21(−0.21) | ||
| −13.00 | −5.15(−7.85) | −4.80(−8.20) | −4.80(−8.20) | −0.98(−12.02) | −8.41(−4.59) | ||
| 0.00 | 4.68(−4.68) | 4.38(−4.38) | 4.38(−4.38) | 0.00(0.00) | 6.89(−6.89) | ||
| 0.00 | 3.64(−3.64) | 3.71(−3.71) | 3.71(−3.71) | 0.00(0.00) | 0.81(−0.81) | ||
| 6.00 | 4.94(1.06) | 4.92(1.08) | 4.91(1.09) | 6.24(−0.24) | 4.31(1.69) | ||
| WQR-LASSO | WQR-E-NET | WQR-ALASSO | WQR-AE-NET | ||||
| 0.04 | 0.04 | 0.05 | 0.06 | ||||
| intercept | −0.72 | 0.38(−1.10) | −0.16(−0.56) | −0.10(−0.62) | −0.11(−0.61) | −0.11(−0.61) | |
| 0.00 | −0.14(0.14) | −2.31(2.31) | −2.44(2.44) | 0.00(0.00) | 0.00(0.00) | ||
| 8.00 | 9.29(−1.29) | 8.33(−0.33) | 9.01(−1.01) | 6.43(1.57) | 6.44(1.56) | ||
| −13.00 | −10.97(−2.03) | 0.00(−13.00) | 0.00(−13.00) | −0.50(−12.50) | −0.52(−12.48) | ||
| 0.00 | 11.54(−11.54) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
| 0.00 | 6.21(−6.21) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
| 6.00 | 1.61(4.39) | 9.03(−3.03) | 9.33(−3.33) | 8.42(−2.42) | 8.42(−2.42) | ||
| 0.04 | 0.04 | 0.01 | 0.03 | ||||
| intercept | 0.00 | 0.44(−0.44) | −0.01(0.01) | 0.00(0.00) | 0.00(0.00) | −0.01(0.01) | |
| 0.00 | 0.72(−0.72) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
| 8.00 | 9.87(−1.87) | 7.48(0.52) | 6.27(1.73) | 8.37(−0.37) | 8.44(−0.44) | ||
| −13.00 | −5.15(−7.85) | −5.75(−7.25) | −5.99(−7.01) | −9.29(−3.71) | −9.67(−3.33) | ||
| 0.00 | 4.68(−4.68) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
| 0.00 | 3.64(−3.64) | −0.18(0.18) | −1.19(1.19) | 0.00(0.00) | 0.00(0.00) | ||
| 6.00 | 4.94(1.06) | 10.68(−4.68) | 11.21(−5.21) | 11.38(−5.38) | 11.32(−5.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudhombo, I.; Ranganai, E. Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET. Computation 2022, 10, 203. https://doi.org/10.3390/computation10110203
Mudhombo I, Ranganai E. Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET. Computation. 2022; 10(11):203. https://doi.org/10.3390/computation10110203
Chicago/Turabian StyleMudhombo, Innocent, and Edmore Ranganai. 2022. "Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET" Computation 10, no. 11: 203. https://doi.org/10.3390/computation10110203
APA StyleMudhombo, I., & Ranganai, E. (2022). Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET. Computation, 10(11), 203. https://doi.org/10.3390/computation10110203

