MultiTask LearningBased Task Scheduling Switcher for a ResourceConstrained IoT System^{ †}
Abstract
:1. Introduction
2. Related Work
2.1. Scheduling Algorithm
2.2. MultiTask Learning
2.3. Previous Research
3. Modeling the Task Scheduling Switcher
3.1. Task Scheduling Switcher Problem
3.2. MultiTask Learning Model
3.3. Scheduling Framework Implementation
4. Evaluation
4.1. Hardware Specification
4.2. Classification Accuracy
4.2.1. Dataset Creation
Algorithm 1 Creating a dataset for training the MTL model. 

4.2.2. PostTraining Log
4.2.3. CrossValidation Results
4.3. Benchmarking the Scheduling Framework
4.3.1. Benchmark Configuration
4.3.2. Benchmark Result
5. Validation
5.1. Simulating the ResourceConstrained Smart Office
5.2. Simulation Configuration
5.3. Simulation Result
5.3.1. Sampled Scheduling Algorithm Switching
5.3.2. Deadline Accuracy and Optimization
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
 Yugha, R.; Chithra, S. A survey on technologies and security protocols: Reference for future generation IoT. J. Netw. Comput. Appl. 2020, 169, 1–13. [Google Scholar] [CrossRef]
 AlJarrah, M.A.; Yaseen, M.A.; AlDweik, A.; Dobre, O.A.; Alsusa, E. Decision Fusion for IoTBased Wireless Sensor Networks. IEEE Internet Things J. 2020, 7, 1313–1326. [Google Scholar] [CrossRef]
 Ciuonzo, D.; Javadi, S.H.; Mohammadi, A.; Rossi, P.S. BandwidthConstrained Decentralized Detection of an Unknown Vector Signal via Multisensor Fusion. IEEE Trans. Signal Inf. Process. Over Netw. 2020, 6, 744–758. [Google Scholar] [CrossRef]
 Hwang, S.I.; Cheng, S.T. Combinatorial Optimization in RealTime Scheduling: Theory and Algorithms. J. Comb. Optim. 2001, 5, 345–375. [Google Scholar] [CrossRef]
 Jha, H.; Chowdhury, S.; Ramya, G. Survey on various Scheduling Algorithms. Imp. J. Interdiscip. Res. 2017, 3, 1749–1752. [Google Scholar]
 Li, G.; Wu, Y.; Lin, D.; Zhao, S. Methods of Resource Scheduling Based on Optimized Fuzzy Clustering in Fog Computing. Sensors 2019, 19, 2122. [Google Scholar] [CrossRef] [PubMed][Green Version]
 Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. DISTILLER: Encrypted traffic classification via multimodal multitask deep learning. J. Netw. Comput. Appl. 2021, 1–19. [Google Scholar] [CrossRef]
 Leem, S.; Yoo, I.; Yook, D. Multitask Learning of Deep Neural NetworkBased Keyword Spotting for IoT Devices. IEEE Trans. Consum. Electron. 2019, 65, 188–194. [Google Scholar] [CrossRef]
 Rafique, M.; Haider, Z.; Mehmood, K.; Zaman, M.S.U.; Irfan, M.; Khan, S.; Kim, C.H. Optimal Scheduling of Hybrid Energy Resources for a Smart Home. Energies 2018, 11, 3201. [Google Scholar] [CrossRef][Green Version]
 Cauteruccio, F. A framework for anomaly detection and classification in Multiple IoT scenarios. Future Gener. Comput. Syst. 2021, 114, 322–335. [Google Scholar] [CrossRef]
 Cauteruccio, F.; Cinelli, L.; Fortino, G.; Savaglio, C.; Terracina, G.; Ursino, D.; Virgili, L. An approach to compute the scope of a social object in a MultiIoT scenario. Pervasive Mob. Comput. 2020, 67, 101223. [Google Scholar] [CrossRef]
 Bebis, G.; Georgiopoulos, M. Feedforward neural networks. IEEE Potentials 1994, 13, 27–31. [Google Scholar] [CrossRef]
 Kamilin, M.H.B.; Ahmadon, M.A.B.; Yamaguchi, S. Evaluation of Process Arrangement Methods Based on Resource Constraint for IoT System. In Proceedings of the 2020 8th International Conference on Information and Education Technology, Okayama, Japan, 28–30 March 2020; pp. 290–294. [Google Scholar]
 Choudhary, N.; Gautam, G.; Goswami, Y.; Khandelwal, S. A Comparative Study of Various CPU Scheduling Algorithms using MOOS Simulator. J. Adv. Shell Program. 2018, 5, 1–5. [Google Scholar]
 Ruder, S. An Overview of MultiTask Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098v1. [Google Scholar]
 Zhang, Q.; Wang, Z.; Wang, B.; Ohsawa, Y.; Hayashi, T. Feature Extraction of Laser Machining Data by Using Deep MultiTask Learning. Information 2020, 11, 378. [Google Scholar] [CrossRef]
 Han, S.; Liu, X.; Han, X.; Wang, G.; Wu, S. Visual Sorting of Express Parcels Based on MultiTask Deep Learning. Sensors 2020, 20, 6785. [Google Scholar] [CrossRef] [PubMed]
 Ahmadon, M.A.B.; Yamaguchi, S.; Mahamad, A.K.; Saon, S. Physical Device Compatibility Support for Implementation of IoT Services with Design Once, Provide Anywhere Concept. Information 2021, 12, 30. [Google Scholar] [CrossRef]
 Heger, J.; Grundstein, S.; Freitag, M. Onlinescheduling using past and realtime data. An assessment by discrete event simulation using exponential smoothing. CIRP J. Manuf. Sci. Technol. 2017, 19, 158–163. [Google Scholar] [CrossRef]
 Jiang, X.; Guan, N.; Long, X.; Tang, Y.; He, Q. Realtime scheduling of parallel tasks with tight deadlines. J. Syst. Archit. 2020, 108, 101742. [Google Scholar] [CrossRef]
 Wu, C.X.; Liao, M.H.; Karatas, M.; Chen, S.Y.; Zheng, Y.J. Realtime neural network scheduling of emergency medical mask production during COVID19. Appl. Soft Comput. 2020, 97, 106790. [Google Scholar] [CrossRef]
 Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
 Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C. TensorFlow: Largescale machine learning on heterogeneous systems. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
 tf.keras.callbacks.ModelCheckpoint. TensorFlow. 14 December 2020. Available online: www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint (accessed on 20 December 2020).
 tf.keras.callbacks.EarlyStopping. TensorFlow. 13 January 2021. Available online: www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping (accessed on 18 January 2021).
 Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Kalenichenko, D. Quantization and Training of Neural Networks for Efficient IntegerArithmeticOnly Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2018; pp. 2704–2713. [Google Scholar]
 PostTraining Quantization. TensorFlow. 9 December 2020. Available online: www.tensorflow.org/lite/performance/post_training_quantization (accessed on 2 January 2021).
 Anaconda. (Individual Edition 2020.02), Anaconda Software Distribution. Available online: www.anaconda.com (accessed on 7 May 2020).
 CUDA Toolkit. (10.1.243). Nvidia. Available online: developer.nvidia.com/cudatoolkit (accessed on 28 May 2020).
 Ord, K. Data adjustments, overfitting and representativeness. Int. J. Forecast. 2020, 36, 195–196. [Google Scholar] [CrossRef]
 Papagiannidis, S.; Marikyan, D. Smart offices: A productivity and wellbeing perspective. Int. J. Inf. Manag. 2020, 51, 102027. [Google Scholar] [CrossRef]
Scheduling Algorithm  Computation Time When Compared to Octasort and Fit  Task Execution Optimization When Compared to First Come First Serve 

First Come First Serve  91.76%  0.00% 
Shortest Job First  95.67%  8.29% 
Sort and Fit  50.87%  40.76% 
Octasort and Fit  0.00%  42.56% 
Scheduling Algorithm  Computation Time  Task Execution Optimization  Flexible Optimization 

Sort and Fit  ✓  ✓  
Online Scheduling  ✓  
Federated Scheduling  ✓  
Deep Reinforcement Learning  ✓  ✓  
Task Scheduling Switcher  ✓  ✓  ✓ 
Training Parameters  Value 

Dataset size  100,000 
Epochs  3000 
Batch size  1000 
Training/Test  7:3 
Type  OS  CPU  GPU  RAM 

Specification  Windows 10 Pro 10.0.19042 Build 19042  Intel i77700HQ 4 Cores (8 threads) 2.807GHz  GeForce GTX 1050 Ti Mobile variant  12 GB 
Randomization Ranges  Values 

Number of tasks $[3,n]$  3∼100 
Number of resources $[1,r]$  1∼10 
Resource constraint $[{\mathrm{value}}_{{0}_{j}},{\mathrm{value}}_{{1}_{j}}]$  10∼100 
Type of Device  Number of Unit  Resource Taken by One Unit  

Electric [W]  Local Area Network [MB/s]  Wide Area Network [MB/s]  
Air conditioner  10  400  12  12 
Temperature sensor  10  15  4  6 
Motion sensor  8  20  6  8 
Smoke sensor  13  16  10  15 
Security door  8  100  3  5 
Security camera  6  100  10  12 
Lighting_0  40  20  1  1 
Lighting_1  5  10  1  1 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin Kamilin, M.H.; Bin Ahmadon, M.A.; Yamaguchi, S. MultiTask LearningBased Task Scheduling Switcher for a ResourceConstrained IoT System. Information 2021, 12, 150. https://doi.org/10.3390/info12040150
Bin Kamilin MH, Bin Ahmadon MA, Yamaguchi S. MultiTask LearningBased Task Scheduling Switcher for a ResourceConstrained IoT System. Information. 2021; 12(4):150. https://doi.org/10.3390/info12040150
Chicago/Turabian StyleBin Kamilin, Mohd Hafizuddin, Mohd Anuaruddin Bin Ahmadon, and Shingo Yamaguchi. 2021. "MultiTask LearningBased Task Scheduling Switcher for a ResourceConstrained IoT System" Information 12, no. 4: 150. https://doi.org/10.3390/info12040150