Concept of an Ontology for Automated Vehicle Behavior in the Context of Human-Centered Research on Automated Driving Styles
Abstract
:1. Introduction
2. Method
- With regard to the various levels of driving automation [3], the ontology should cover the entire spectrum from assisted driving (SAE level 1) to fully automated driving.
- The ontology should include a conceptual distinction between the characteristics of vehicle occupants and those of the automated vehicle.
- As a basis for further research, the ontology should allow a reproducible description of driving styles of automated vehicles, independent of the vehicle’s software and hardware.
3. Review
4. Definitions
4.1. Driving Style
“Driving style concerns the way individuals choose to drive or driving habits that have become established over a period of years. It includes choice of driving speed, threshold for overtaking, headway, and propensity to commit traffic violations.”
4.2. Driving Behavior
4.3. Driving Experience
4.4. Driveability
4.5. Evaluation of the Definitions
5. Ontology for Automated Vehicle Behavior
5.1. Redefinition of the Term Driving Style
For human driving styles, the definition created by Elander et al. [5] and highlighted in Section 4.1 is retained and supplemented by all further parameters of the way of driving, such as the choice of driving maneuvers. The automated driving style is defined at this point by referring this definition not to the driver but to the vehicle’s automation system.
5.2. Extension of the Term Driveability
By extension of the definition by Mitschke and Wallentowitz [10] presented in Section 4.4, driveability is defined as the vehicle reactions induced by the driver, external circumstances, and the automation system. In addition to this definition, all driving situations and not only driving curves are considered in terms of driveability at this point.
5.3. Clarification of the Term Driving Behavior
Driving behavior is defined as the direct control commands for the automated dynamic driving task that result from the behavior generation. Accordingly, the driving behavior includes instructions for vehicle actuators, such as steering and braking systems, and results in the automated driving style of the vehicle.
5.4. Extension of the Term Driving Experience
Driving experience describes the complex feeling of the driver that results from the interaction between himself and the vehicle [56]. With a view to the adoption of the partial or complete dynamic driving task by the automation system depending on the automation level [3], driving experience at this point is related to all vehicle occupants and not only to the driver.
6. Discussion and Conclusions
6.1. Human-Centered Research on Automated Vehicle Behavior
6.2. Ontology for Automated Vehicle Behavior
6.3. Recommendations for Automated Driving Styles
6.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- VDA. Automatisiertes Fahren 2018. Available online: https://www.vda.de/de/themen/innovation-und-technik/automatisiertes-fahren/automatisiertes-fahren.html (accessed on 17 May 2020).
- Gasser, T.M.; Schmidt, E.A.; Bengler, K.; Chiellino, U.; Diederichs, F.; Eckstein, L.; Flemisch, F.; Fraedrich, E.; Fuchs, E.; Gustke, M.; et al. Bericht zum Forschungsbedarf: Runder Tisch Automatisiertes Fahren–AG Forschung 2015. Available online: https://www.bmvi.de/SharedDocs/DE/Anlage/DG/Digitales/bericht-zum-forschungsbedarf-runder-tisch-automatisiertes-fahren.html (accessed on 6 January 2021).
- SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles–J3016; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Bubb, H.; Bengler, K.; Grünen, R.E.; Vollrath, M. (Eds.) Automobilergonomie; Springer: Wiesbaden, Germany, 2015. [Google Scholar] [CrossRef]
- Elander, J.; West, R.; French, D. Behavioral Correlates of Individual Differences in Road-Traffic Crash Risk: An Examination of Methods and Findings. Psychol. Bull. 1993, 113, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Berry, I.M. The Effects of Driving Style and Vehicle Performance on the Real-World Fuel Consumption of U.S. Light-Duty Vehicles. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Rochon, J.; Swain, L.; O’Hara, S. Exposure to the Risk of an Accident: A Review of the Literature, and the Methodology for the Canadian Study; Transport Canada: Ottawa, ON, Canada, 1978.
- Hurter, D.A. A Study of Technological Improvements in Automobile Fuel Consumption Volume II: Comprehensive Discussion; U.S. Department of Transportation: Cambridge, MA, USA, 1974.
- Bengler, K. Driver and Driving Experience in Cars. In Automotive User Interfaces; Meixner, G., Müller, C., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 79–94. [Google Scholar]
- Mitschke, M.; Wallentowitz, H. Dynamik der Kraftfahrzeuge, 5th ed.; VDI-Buch, Springer: Wiesbaden, Germany, 2014. [Google Scholar] [CrossRef]
- Rothengatter, T.; Alm, H.; Kuiken, M.J.; Michon, J.A.; Verwey, W.B. The driver. In Generic Intelligent Driver Support; Michon, J.A., Ed.; Taylor & Francis: London, UK, 1993; pp. 33–52. [Google Scholar]
- Sagberg, F.; Selpi; Piccinini, G.F.B.; Engström, J. A Review of Research on Driving Styles and Road Safety. Hum. Factors 2015, 57, 1248–1275. [Google Scholar] [CrossRef]
- Sato, T.; Akamatsu, M. Development of an Interference System for Drivers’ Driving Style and Workload Sensitivity from their Demographic Characteristics. In Advances in Human Aspects of Transportation Part III; Stanton, N., Landry, S., Di Bucchianico, G., Vallicelli, A., Eds.; AHFE Conference: Manhattan, NY, USA, 2014. [Google Scholar]
- Wu, L.; Li, H.; Ding, H.; Zhang, L. Who Has Better Driving Style: Let Data Tell Us. In Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing; Bi, Y., Bhatia, R., Kapoor, S., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Bänsch, A.; Alewell, D. Wissenschaftliches Arbeiten, 11th ed.; Oldenbourg Wissenschaftsverlag GmbH: München, Germany, 2013. [Google Scholar]
- Festner, M.; Eicher, A.; Schramm, D. Beeinflussung der Komfort- und Sicherheitswahrnehmung beim hochautomatisierten Fahren durch fahrfremde Tätigkeiten und Spurwechseldynamik. In 11. Workshop Fahrerassistenzsysteme und Automatisiertes Fahren; Uni-DAS e.V.: Darmstadt, Germany, 2017. [Google Scholar]
- Bellem, H.; Thiel, B.; Schrauf, M.; Krems, J.F. Comfort in automated driving: An analysis of preferences for different automated driving styles and their dependence on personality traits. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 90–100. [Google Scholar] [CrossRef]
- Lange, A.; Maas, M.; Albert, M.; Siedersberger, K.H.; Bengler, K. Automatisiertes Fahren – So komfortabel wie möglich, so dynamisch wie nötig. In 30. VDI/VW-Gemeinschaftstagung Fahrerassistenz und Integrierte Sicherheit; VDI Verlag: Düsseldorf, Germany, 2014. [Google Scholar]
- Scherer, S.; Schubert, D.; Dettmann, A.; Hartwich, F.; Bullinger, A.C. Wie will der “Fahrer” automatisiert gefahren werden? Überprüfung verschiedener Fahrstile hinsichtlich des Komforterlebens. In 32. VDI/VW-Gemeinschaftstagung Fahrerassistenzsysteme und Automatisiertes Fahren; VDI Verlag: Düsseldorf, Germany, 2016. [Google Scholar]
- Siebert, F.W.; Wallis, F.L. How speed and visibility influence preferred headway distances in highly automated driving. Transp. Res. Part F Traffic Psychol. Behav. 2019, 64, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Busse, J.; Humm, B.; Lübbert, C.; Moelter, F.; Reibold, A.; Rewald, M.; Schlüter, V.; Seiler, B.; Tegtmeier, E.; Zeh, T. Was bedeutet eigentlich Ontologie? Informatik-Spektrum 2014, 37, 286–297. [Google Scholar] [CrossRef]
- Bengler, K.; Rettenmaier, M.; Fritz, N.; Feierle, A. From HMI to HMIs: Towards an HMI Framework for Automated Driving. Information 2020, 11, 61. [Google Scholar] [CrossRef] [Green Version]
- Scherer, S.; Dettmann, A.; Hartwich, F.; Pech, T.; Bullinger, A.C.; Wanielik, G. How the driver wants to be driven—Modelling driving styles in highly automated driving. Paper Presented at 7. Tagung Fahrerassistenz, München, Germany, 25–26 November 2015. [Google Scholar]
- Wei, J.; Dolan, J.M.; Litkouhi, B. Autonomous Vehicle Social Behavior for Highway Entrance Ramp Management. In Proceedings of the Intelligent Vehicles Symposium (IV), Gold Coast City, QLD, Australia, 23–26 June 2013. [Google Scholar]
- Knapp, A.; Neumann, M.; Brockmann, M.; Walz, R.; Winkle, T. Code of Practice for the Design and Evaluation of ADAS 2009. Available online: http://www.acea.be/publications/article/code-of-practice-for-the-design-and-evaluation-of-adas (accessed on 6 January 2021).
- Simon, K.; Jentsch, M.; Bullinger, A.C.; Meincke, E.; Schamber, G. Sicher aber langweilig? Auswirkungen vollautomatisierten Fahrens auf den erlebten Fahrspaß. Z. Arbeitswissenschaft 2015, 69, 81–88. [Google Scholar] [CrossRef]
- AutoScout24 GmbH. Unser Auto von Morgen 2015: Einschätzungen, Wünsche und Visionen 2015. Available online: http://about.autoscout24.com/de-de/au-press/2015_as24_studie_auto_v_morgen.pdf (accessed on 17 May 2020).
- Schoettle, B.; Sivak, M. Public Opinion about Self-Driving Vehicles in China, India, Japan, the U.S., the U.K., and Australia; Technical Report No. UMTRI-2014-30; University of Michigan: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Lange, A. Gestaltung der Fahrdynamik beim Fahrstreifenwechselmanöver als Rückmeldung für den Fahrer beim automatisierten Fahren. Ph.D. Thesis, Technical University of Munich, München, Germany, 2018. [Google Scholar]
- ISO. Intelligent Transport Systems—Adaptive Cruise Control Systems—Performance Requirements and Test Procedures, 15622:2010; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Hoedemaeker, M. Driving with intelligent vehicles: Driving behaviour with Adaptive Cruise Control and the acceptance by individual drivers. Ph.D. Thesis, Delft University of Technology, Delft University Press, Delft, The Netherlands, 1999. [Google Scholar]
- Heißing, B.; Kudritzki, D.; Schindlmaister, R.; Mauter, G. Menschengerechte Auslegung des dynamischen Verhaltens von PKW. In Ergonomie und Verkehrssicherheit; Bubb, H., Ed.; Herbert Utz Verlag: München, Germany, 2000; pp. 1–32. [Google Scholar]
- Siebert, F.W.; Oehl, M.; Pfister, H.R. The influence of time headway on subjective driver states in adaptive cruise control. Transp. Res. Part F Traffic Psychol. Behav. 2014, 25, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Siebert, F.W.; Oehl, M.; Bersch, F.; Pfister, H.R. The exact determination of subjective risk and comfort thresholds in car following. Transp. Res. Part F Traffic Psychol. Behav. 2017, 46, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Festner, M.; Baumann, H.; Schramm, D. Der Einfluss fahrfremder Tätigkeiten und Manöverlängsdynamik auf die Komfort-und Sicherheitswahrnehmung beim hochautomatisierten Fahren. In 32. VDI/VW-Gemeinschaftstagung Fahrerassistenzsysteme und Automatisiertes Fahren; VDI Verlag: Düsseldorf, Germany, 2016. [Google Scholar]
- Cramer, S.; Blenk, T.; Albert, M.; Sauer, D. Evaluation of different driving styles during conditionally automated highway driving. In Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2019 Annual Conference; de Waard, D., Toffetti, A., Pietrantoni, L., Franke, T., Petiot, J.F., Dumas, C., Botzer, A., Onnasch, L., Milleville, I., Mars, F., Eds.; HFES: Santa Monica, CA, USA, 2020; Available online: https://www.hfes-europe.org/wp-content/uploads/2019/10/CramerBlenk2019.pdf (accessed on 6 January 2021).
- Rossner, P.; Bullinger, A.C. Do You Shift or Not? Influence of Trajectory Behaviour on Perceived Safety During Automated Driving on Rural Roads. In HCI in Mobility, Transport, and Automotive Systems. LNCS 11596; Krömker, H., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 245–254. [Google Scholar]
- Oliveira, L.; Proctor, K.; Burns, C.G.; Birrell, S. Driving Style: How Should an Automated Vehicle Behave? Information 2019, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Rossner, P.; Bullinger, A.C. How Do You Want to be Driven? Investigation of Different Highly-Automated Driving Styles on a Highway Scenario. In Advances in Human Factors of Transportation. AISC 964; Stanton, N., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 36–43. [Google Scholar]
- Chen, S.W.; Fang, C.Y.; Tien, C.T. Driving behaviour modelling system based on graph construction. Transp. Res. Part C Emerg. Technol. 2013, 26, 314–330. [Google Scholar] [CrossRef]
- Han, W.; Wang, W.; Li, X.; Xi, J. Statistical-based approach for driving style recognition using Bayesian probability with kernel density estimation. IET Intell. Transp. Syst. 2019, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Bellem, H.; Schönenberg, T.; Krems, J.F.; Schrauf, M. Objective metrics of comfort: Developing a driving style for highly automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 45–54. [Google Scholar] [CrossRef]
- Griesche, S.; Krähling, M.; Käthner, D. CONFORM – A visualization tool and method to classify driving styles in context of highly automated driving. In 30. VDI/VW-Gemeinschaftstagung Fahrerassistenz und Integrierte Sicherheit; VDI Verlag: Düsseldorf, Germany, 2014; pp. 101–110. [Google Scholar]
- Wang, J.; Li, K.; Lu, X.Y. Effect of Human Factors on Driver Behavior. In Advances in Intelligent Vehicles; Chen, Y., Li, L., Eds.; Academic Press: Kidlington, UK, 2014; pp. 111–157. [Google Scholar] [CrossRef]
- Chen, F.; Wang, M.; Duan, L. Letting Drivers Know What is Going on in Traffic. In Advances in Intelligent Vehicles; Chen, Y., Li, L., Eds.; Academic Press: Kidlington, UK, 2014; pp. 291–318. [Google Scholar] [CrossRef]
- Ardelt, M.; Coester, C.; Kaempchen, N. Highly Automated Driving on Freeways in Real Traffic Using a Probabilistic Framework. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1576–1585. [Google Scholar] [CrossRef]
- Baker, C.R.; Dolan, J.M. A Case Study in Behavioral Subsystem Engineering for the Urban Challenge. IEEE/RAM Special Issue on Software Engineering in Robotics. 2008. Available online: https://www.ri.cmu.edu/pub_files/2009/3/ram2008-FinalSubmission.pdf (accessed on 6 January 2021).
- Bartels, A.; Berger, C.; Krahn, H.; Rumpe, B. Qualitätsgesicherte Fahrentscheidungsunterstützung für automatisches Fahren auf Schnellstraßen und Autobahnen. In 10. Braunschweiger Symposium Automatisierungssysteme, Assistenzsysteme und Eingebettete Systeme für Transportmittel; GZVB: Braunschweig, Germany, 2009. [Google Scholar]
- Hohm, A.; Lotz, F.; Fochler, O.; Lueke, S.; Winner, H. Automated Driving in Real Traffic: From Current Technical Approaches towards Architectural Perspectives; SAE Technical Paper 2014-01-0159; SAE: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Matthaei, R.W.H. Wahrnehmungsgestützte Lokalisierung in fahrstreifengenauen Karten für Assistenzsysteme und automatisches Fahren in urbaner Umgebung. Ph.D. Thesis, Technical University Braunschweig, Braunschweig, Germany, 2015. [Google Scholar]
- Donges, E. Aspekte der Aktiven Sicherheit bei der Führung von Personenkraftwagen. Automobil-Industrie 1982, 27, 183–190. [Google Scholar]
- Maurer, M. Flexible Automatisierung von Straßenfahrzeugen mit Rechnersehen. Ph.D. Thesis, Bundeswehr University Munich, Neubiberg, Germany, 2000. [Google Scholar]
- Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al. Making Bertha Drive—An Autonomous Journey on a Historic Route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [Google Scholar] [CrossRef]
- Donges, E. Fahrerverhaltensmodelle. In Handbuch Fahrerassistenzsysteme; Winner, H., Hakuli, S., Lotz, F., Singer, C., Eds.; Springer Vieweg: Wiesbaden, Germany, 2015; pp. 17–26. [Google Scholar]
- Hertzberg, J.; Lingemann, K.; Nüchter, A. Mobile Roboter: Eine Einführung aus Sicht der Informatik; Springer Vieweg: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Schöggl, P. Objektivierung und Optimierung der Fahrbarkeit im Fahrzeug und am dynamischen Prüfstand. In Subjektive Fahreindrücke Sichtbar Machen; Becker, K., Ed.; Expert Verlag: Renningen-Malmsheim, Germany, 2000; pp. 122–138. [Google Scholar]
- Kuoch, S.K.; Nowakowski, C.; Hottelart, K.; Reilhac, P.; Escrieut, P. Designing an Intuitive Driving Experience in a Digital World. Preprints 2018. [Google Scholar] [CrossRef]
- Martin, H.; Tschabuschnig, K.; Bridal, O.; Watzenig, D. Functional Safety of Automated Driving Systems: Does ISO 26262 Meet the Challenges? In Automated Driving; Watzenig, D., Horn, M., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 387–416. [Google Scholar]
- ISO. Ergonomics of Human-System Interaction—Part 210: Human-Centred Design for Interactive Systems, 9241-210:2010; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Abendroth, B.; Bruder, R. Capabilities of Humans for Vehicle Guidance. In Handbook of Driver Assistance Systems; Winner, H., Hakuli, S., Lotz, F., Singer, C., Eds.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 3–18. [Google Scholar]
- Zomotor, A. Fahrwerktechnik: Fahrverhalten, 1st ed.; Vogel Buchverlag: Würzburg, Germany, 1987. [Google Scholar]
- Bubb, H. Informationswandel durch das System. In Ergonomie; Schmidtke, H., Ed.; Carl Hanser Verlag: München, Germany, 1993; pp. 333–390. [Google Scholar]
- Flemisch, F.O.; Bengler, K.; Bubb, H.; Winner, H.; Bruder, R. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire. Ergonomics 2014, 57, 343–360. [Google Scholar] [CrossRef]
- Flemisch, F.; Abbink, D.A.; Itoh, M.; Pacaux-Lemoine, M.P.; Weßel, G. Joining the blunt and the pointy end of the spear: Towards a common framework of joint action, human–machine cooperation, cooperative guidance and control, shared, traded and supervisory control. Cogn. Technol. Work 2019, 21, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Jentsch, M.; Roßner, P.; Missbach, A.; Bullinger, A.C. Adaptivität oder Adaptierbarkeit im Fahrzeug – Leitfaden und Konzepte zur optimalen Fahrerunterstützung. In 61. Frühjahrskongress der Gesellschaft für Arbeitswissenschaft; GfA: Dortmund, Germany, 2015. [Google Scholar]
- Naujoks, F.; Hergeth, S.; Wiedemann, K.; Schömig, N.; Forster, Y.; Keinath, A. Test procedure for evaluating the human-machine interface of vehicles with automated driving systems. Traffic Inj. Prev. 2019, 20, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Nordhoff, S.; Kyriakidis, M.; van Arem, B.; Happee, R. A multi-level model on automated vehicle acceptance (MAVA): A review-based study. Theor. Issues Ergon. Sci. 2019, 20, 682–710. [Google Scholar] [CrossRef] [Green Version]
- Beggiato, M.; Krems, J.F. The evolution of mental model, trust and acceptance of adaptive cruise control in relation to initial information. Transp. Res. Part F Traffic Psychol. Behav. 2013, 18, 47–57. [Google Scholar] [CrossRef]
- Wada, T. Motion Sickness in Automated Vehicles. In Proceedings of the 13th International Symposium on Advanced Vehicle Control (AVEC’16); Edelmann, J., Plöchl, M., Pfeffer, P.E., Eds.; Taylor & Francis: London, UK, 2016. [Google Scholar]
- Beggiato, M.; Hartwich, F.; Krems, J. Der Einfluss von Fahrermerkmalen auf den erlebten Fahrkomfort im hochautomatisierten Fahren. Automatisierungstechnik 2017, 65, 512–521. [Google Scholar] [CrossRef]
- Murphey, Y.L.; Milton, R.; Kiliaris, L. Driver’s Style Classification Using Jerk Analysis. In Proceedings of the 2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, Nashville, TN, USA, 30 March–2 April 2009; pp. 23–28. [Google Scholar] [CrossRef]
- Kedar-Dongarkar, G.; Das, M. Driver Classification for Optimization of Energy Usage in a Vehicle. Procedia Comput. Sci. 2012, 8, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Hartwich, F.; Beggiato, M.; Krems, J.F. Driving comfort, enjoyment and acceptance of automated driving—Effects of drivers’ age and driving style familiarity. Ergonomics 2018, 61, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Design | Results | |||
---|---|---|---|---|---|
SAE | Driving Maneuvers | Environment | Metrics | ||
[33] | 1 | Following preceding vehicle (v = {50, 100, 150 km/h}) with eight Time Headways t | Fixed-Base Driving Simulator—Rural Road | Difficulty, Risk, Comfort, etc. | t≥ 2.0 s (50 km/h), t≥ 1.5 s (100, 150 km/h) |
[34] | 1 | Following preceding vehicle (v = {50, 100, 150 km/h}) with selectable Time Headways t | Fixed-Base Driving Simulator—Highway, Rural Road, etc. | Risk and Comfort | t≥ 2.0 s (50, 100, 150 km/h) |
[20] | 4 | Following preceding vehicle (v = {50, 100, 150 km/h}) with ten Time Headways t | Fixed-Base Driving Simulator—Highway, Rural Road, etc. | Comfort | t≥ 1.5 s (50 km/h), t≥ 1.25 s (100 km/h), t≥ 1.0 s (150 km/h) |
[19] | 3 | Acceleration (0 ≤ v≤ 30 km/h) with three Driving Styles | Real Vehicle (Testing Ground)—Straight Road | Driving Fun, Comfort, etc. | a≈ 1.5 m/s2 (steady) |
[17] | 4 | Acceleration (100 ≤ v≤ 120 km/h) with three Driving Styles | Dynamic Driving Simulator—Highway | Utility Scale Value | Symmetrical velocity profile (v) |
[19] | 3 | Deceleration (0 ≤ v≤ 30 km/h) with three Driving Styles | Real Vehicle (Testing Ground)—Straight Road | Driving Fun, Comfort, etc. | a≈ −1.0 m/s2 (steady) |
[17] | 4 | Deceleration (80 ≤ v≤ 100 km/h) with three Driving Styles | Dynamic Driving Simulator—Highway | Utility Scale Value | Asymmetrical (early strong jerk) velocity profile (v) |
[35] | 3 | Deceleration (80 ≤ v≤ 130 km/h) with three Driving Styles | Real Vehicle (Testing Ground)—Highway | Perceived Safety, Comfort, etc. | a > −1.7 m/s2, j > −1.3 m/s3 |
[18] | 2, 4 | Lane Change (v = 60 km/h) with three Driving Styles | Real Vehicle (Testing Ground)—Highway | Driving Fun, Feedback, Comfort | t≈ 4.4 s (level 2, SAE), t≈ 5.1 s (level 4, SAE) |
[17] | 4 | Lane Change (v = 100 km/h) with three Driving Styles | Dynamic Driving Simulator—Highway | Utility Scale Value | Asymmetrical (early strong jerk) and symmetrical velocity profiles (v) |
[16] | 3 | Lane Change (v = 110 km/h) with three Driving Styles | Real Vehicle (Testing Ground)—Highway | Perceived Safety and Comfort | a < 0.8 m/s2, j < 1.2 m/s3 |
[36] | 3 | Lane Change (v= 120 km/h) with three Driving Styles | Real Vehicle—Highway | Well-Being, Comfort, Trust, etc. | Overall Priority: Deceleration of the rear vehicle a>−0.9 m/s2 |
[37] | 4 | No preceding vehicle with two Driving Styles | Fixed-Base Driving Simulator—Rural Road | Perceived Safety, Comfort, etc. | Reactive trajectory is preferred for oncoming traffic scenarios |
[38] | 4 | Interactions with other vehicles with two Driving Styles | Real Vehicle (Testing Ground)—T-junctions | Trust and Acceptance | Early versions more conservative and human-like |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ossig, J.; Cramer, S.; Bengler, K. Concept of an Ontology for Automated Vehicle Behavior in the Context of Human-Centered Research on Automated Driving Styles. Information 2021, 12, 21. https://doi.org/10.3390/info12010021
Ossig J, Cramer S, Bengler K. Concept of an Ontology for Automated Vehicle Behavior in the Context of Human-Centered Research on Automated Driving Styles. Information. 2021; 12(1):21. https://doi.org/10.3390/info12010021
Chicago/Turabian StyleOssig, Johannes, Stephanie Cramer, and Klaus Bengler. 2021. "Concept of an Ontology for Automated Vehicle Behavior in the Context of Human-Centered Research on Automated Driving Styles" Information 12, no. 1: 21. https://doi.org/10.3390/info12010021
APA StyleOssig, J., Cramer, S., & Bengler, K. (2021). Concept of an Ontology for Automated Vehicle Behavior in the Context of Human-Centered Research on Automated Driving Styles. Information, 12(1), 21. https://doi.org/10.3390/info12010021