# Reflection Analysis of Impermeable Slopes under Bimodal Sea Conditions

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Reflection Characteristics of Smooth Impermeable Slopes

## 3. Material and Methods

#### 3.1. Design of Model Tests

_{1}= 0, X

_{12}= L/10, X

_{13}= L/4, and X

_{14}= L/3, as shown in the detailed experimental set up. The full details of the experiment can be found in Orimoloye et al. [39].

#### 3.2. Reflection Analysis

#### 3.3. Estimation of Reflection Parameters

## 4. Results and Discussions

#### 4.1. Influence of Wall Slope on Reflection Characteristics

#### 4.2. Influence of Water Depth Variations

#### 4.3. Influence of Wave Steepness

#### 4.4. Effects of the Crest Freeboard

## 5. Reflection Coefficients of Steep Slopes Under Bimodal Waves

**a**) cot $\alpha $ = 1.5; (

**b**) cot $\alpha $ = 3.0).

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

$\alpha $ | The structure slope |

$\xi $ | Breaker index or surf similarity parameter |

${\xi}_{m-1,0}$ | Breaker Index with ${L}_{o}$ based on ${S}_{m-1,0}={H}_{m-1,0}/{L}_{m-1,0}$ |

${\xi}_{p}$ | Breaker Index with ${L}_{p}$ based on ${T}_{p}$ |

${T}_{p}$ | Peak period |

FFT | Fast Fourier Transform |

g | Acceleration due to gravity |

h | Water depth |

H | Wave height |

${H}_{m0}$ | Significant wave height |

IFFT | Inverse Fast Fourier Transform |

H | Significant wave height |

Jonswap | Joint North Sea Wave Project |

${K}_{r}$ | Reflection coefficient |

${L}_{m-1,0}$ | The linear wave length |

${R}_{c}$ | Crest freeboard |

SSER | Sea-swell energy ratio |

${T}_{m-1,0}$ | The spectra wave period |

${T}_{pS1}$ | Peak periods of swell wave at 11 s |

${T}_{pS2}$ | Peak periods of swell wave at 15 s |

${T}_{pS3}$ | Peak periods of swell wave at 20 s |

${T}_{pS4}$ | Peak periods of swell wave at 25 s |

${T}_{pW}$ | Peak period of wind wave |

UK | United Kingdom |

${S}_{m-1,0}$ | Wave steepness derived from ${T}_{m-1,0}$ |

${K}_{r}$ | Reflection coefficient |

## References

- Andersen, T.L.; Frigaard, P.; Burcharth, H.F. Lecture Notes for the Course in Water Wave Mechanics; Department of Civil Engineering, Aalborg University: Aalborg, Denmark, 2014. [Google Scholar]
- Zanuttigh, B.; van Der Meer, J.W. Wave reflection from coastal structures in design conditions. Coast. Eng.
**2008**, 55, 771–779. [Google Scholar] [CrossRef] - Hawkes, P.J.; Coates, T.; Jones, R.J. Impacts of Bimodal Seas on Beaches, Hydraulic Research Wallingford. Hydraul. Res. Wallingford
**1998**, 265, 80. [Google Scholar] - Thompson, A.D.; Reeve, D.E.; Karunarathna, H. Modelling extreme wave overtopping at Aberystwyth Promenade. Water
**2017**, 9, 663. [Google Scholar] [CrossRef] [Green Version] - Polidoro, A.; Pullen, T.; Eade, J. Gravel beach profile response allowing for bimodal sea states. Proc. Inst. Civ. Eng. Marit. Eng.
**2018**, 171, 145–146. [Google Scholar] [CrossRef] - Miche, M. Le pouvoir reflêchissant des ouvrages maritimes exposés à l’action de la houl. Annales de Ponts et Chaussées
**1951**, 121, 285–319. [Google Scholar] - Ursell, J.; Dean, R.G.; Yu, Y. Forced small amplitude water waves: a comparison of theory and experiment. J. Fluid Mech.
**1960**, 7, 33–52. [Google Scholar] [CrossRef] - Battjes, J.A. Surf similarity. In Proceedings of the 14th International Conference on Coastal Engineering, ASCE, Copenhagen, Denmark, 24–28 June 1974; pp. 460–480. [Google Scholar]
- Iribarren, C.; Nogales, C. Protection des Ports. In Proceedings of the XVIIth International Naval Congress, Lisbon, Portugal, 1 January 1949; Volume 4, pp. 31–80. [Google Scholar]
- Seelig, W.N. Two-Dimensional Tests of Wave Transmission and Reflection Characteristics of Laboratory Breakwaters; Technical Report; Coastal Engineering Research Centre: Fort Belvoir, VA, USA, 1980. [Google Scholar]
- Seelig, W.N.; Ahrens, J.P. Estimation of Wave Reflection and Energy Dissipation Coefficients for Beaches, Revetments, and Breakwaters; Technical Paper No. 81-1; US Army Corps of Engineers: Washington, DC, USA, 1981; pp. 1–41. [Google Scholar]
- Davidson, M.; Bird, P.; Bullock, G.; Huntley, D. A new non-dimensional number for the analysis of wave reflection from rubble mound breakwaters. Coast. Eng.
**1996**, 28, 93–120. [Google Scholar] [CrossRef] - Gunbak, A. The Stability of Rubble Mound Breakwaters in Relation to Wave Breaking and Run-Down Characteristics and to the Tan; Div. Port and Ocean Eng., The Norwegian Institute of Technology: Trondheim, Norway, 1976. [Google Scholar]
- DeBok, D.H. A Large Scale Model Study of Placed Stone Breakwaters. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1977. [Google Scholar]
- Manual, S.P. Department of the Army; US Army Corps of Engineers: Washington, DC, USA, 1984. [Google Scholar]
- Numata, A. Laboratory formulation for transmission and reflection at permeable breakwaters of artificial blocks. Coast. Eng. Jpn.
**1976**, 19, 47–58. [Google Scholar] [CrossRef] - Gimenez-Curto, L. Behaviour of Rubble Mound Breakwaters Under Wave Action. Ph.D. Thesis, University of Santander, Cantabria, Spain, 1979. [Google Scholar]
- Losada, M.A.; Gimenez-Curto, L.A. An approximation to the failure probability of maritime structures under a sea state. Coast. Eng.
**1981**, 5, 147–157. [Google Scholar] [CrossRef] - Postma, G. Wave Reflection From Rock Slopes under Random Wave Attack. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 1989. [Google Scholar]
- Allsop, N.; Channell, A. Wave Reflections in Harbours: The Reflection Performance of Wave Screens; Report OD; HR Wallingford: Wallingford, UK, 1988; Volume 102. [Google Scholar]
- Van der Meer, J.W. Conceptual design of rubble mound breakwaters. In Advances In Coastal And Ocean Engineering: (Volume 1); World Scientific: Singapore, 1995; pp. 221–315. [Google Scholar]
- Oumeraci, H.; Partenscky, H. Wave-induced pore pressure in rubble mound breakwaters. In Coastal Engineering; ASCE: Delft, The Netherlands, 1991; pp. 1334–1347. [Google Scholar]
- Muttray, M.; Oumeraci, H.; Zimmermann, C.; Partenscky, H. Wave energy dissipation on and in rubble mound structures. In Coastal Engineering; ASCE: Venice, Italy, 1993; pp. 1434–1447. [Google Scholar]
- Allsop, N.; Hettiarachchi, S. Reflections from Coastal Structures. Proceedings of the 21st International Conference on Coastal Engineering, Torremolinos, Spain, 20–25 June 1988; Edge, B.L., Ed.; American Society of Civil Engineers: New York, NY, USA, 1988; pp. 782–794. [Google Scholar]
- Shimada, A.; Fujimoto, T.; Saito, S.; Sakakiyama, T.; Hirakuchi, H. Scale effects on stability and wave reflection regarding armor units. In Coastal Engineering; ASCE: New York, NY, USA, 1987; pp. 2238–2252. [Google Scholar]
- Neelamani, S.; Sandhya, N. Wave reflection, run-up, run-down and pressures on plane, dentated and serrated seawalls. Coast. Eng. J.
**2004**, 46, 141–169. [Google Scholar] [CrossRef] - Wang, B.; van der Meer, J.W.; Otta, A.K.; Chadwick, A.J.; Horrillo-Caraballo, J. Reflection of obliquely incident waves at low-crested structures. In Coastal Dynamics 2005: State of the Practice; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–12. [Google Scholar]
- Zanuttigh, B.; Andersen, T.L. Wave reflection in 3D conditions. Coast. Eng.
**2010**, 57, 531–538. [Google Scholar] [CrossRef] - Li, Y.; Dong, G.; Liu, H.; Sun, D. The reflection of oblique incident waves by breakwaters with double-layered perforated wall. Coast. Eng.
**2003**, 50, 47–60. [Google Scholar] [CrossRef] - Koraim, A.; Rageh, O. Hydrodynamic performance of vertical porous structures under regular waves. China Ocean. Eng.
**2013**, 27, 451–468. [Google Scholar] [CrossRef] - Young, D.M.; Testik, F.Y. Wave reflection by submerged vertical and semicircular breakwaters. Ocean. Eng.
**2011**, 38, 1269–1276. [Google Scholar] [CrossRef] - Koraim, A.S.; Heikal, E.M.; Zaid, A.A. Hydrodynamic characteristics of porous seawall protected by submerged breakwater. Applied Ocean Research
**2014**, 46, 1–14. [Google Scholar] [CrossRef] - Lee, J.I.; Shin, S. Experimental study on the wave reflection of partially perforated wall caissons with single and double chambers. Ocean. Eng.
**2014**, 91, 1–10. [Google Scholar] [CrossRef] - Esmaeili, M.; Rahbani, M.; Khaniki, A.K. Experimental investigating on the reflected waves from the caisson-type vertical porous seawalls. Acta Oceanol. Sin.
**2019**, 38, 117–123. [Google Scholar] [CrossRef] - Orimoloye, S.; Karunarathna, H.; Reeve, D.E. Effects of Swell on Wave Height Distribution of Energy-Conserved Bimodal Seas. J. Mar. Sci. Eng.
**2019**, 7, 79. [Google Scholar] [CrossRef] [Green Version] - Allsop, N.; Bruce, T.; Pearson, J.; Besley, P. Wave overtopping at vertical and steep seawalls. Mar. Eng.
**2005**, 158, 103–114. [Google Scholar] [CrossRef] [Green Version] - Schäffer, H.A. Second-order wavemaker theory for irregular waves. Ocean. Eng.
**1996**, 23, 47–88. [Google Scholar] [CrossRef] - Zelt, J.; Skjelbreia, J.E. Estimating incident and reflected wave fields using an arbitrary number of wave gauges. In Proceedings of the 23rd ICCE, Venice, Italy, 4–9 October 1992; pp. 777–788. [Google Scholar]
- Orimoloye, S.; Horrillo-Caraballo, J.; Karunarathna, H.; Reeve, D.E. Modelling wave overtopping of steep impermeable structures under bimodal sea conditions. In Proceedings of the Coastal Structures, Hannover, Germany, 30 September–2 October 2019. [Google Scholar]
- Mansard, E.P.; Funke, E. The measurement of incident and reflected spectra using a least squares method. In Proceedings of the 17th Coastal Engineering Conference, Sydney, Australia, 23–28 March 1980; pp. 154–172. [Google Scholar]
- Reeve, D.; Chadwick, A.; Fleming, C. Coastal Engineering: Processes, Theory and Design Practice; Spon: London, UK, 2015; 518p. [Google Scholar]
- Owen, M. Design of Seawalls Allowing for Wave Overtopping; HR Report number Ex 924; Hydraulic Station: Wallingford, UK, 1988. [Google Scholar]
- Van Gent, M.R. The modelling of wave action on and in coastal structures. Coast. Eng.
**1994**, 22, 311–339. [Google Scholar] [CrossRef] [Green Version] - Nassar, K.; Negm, A. Determination of optimum wave reflection of seawalls via experimental modeling. In Scour and Erosion: Proceedings of the 8th International Conference on Scour and Erosion, Oxford, UK, 12–15 September 2016; CRC Press: Boca Raton, FL, USA, 2016; p. 255. [Google Scholar]
- Negm, A.; Nassar, K. Determination of Wave Reflection Formulae for Vertical and Sloped Seawalls Via Experimental Modelling. Procedia Eng.
**2016**, 154, 919–927. [Google Scholar] [CrossRef] [Green Version] - Goda, Y. Random Seas and Design of Maritime Structures; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2010; p. 708. [Google Scholar]

**Figure 1.**An illustration of the prediction of the reflection characteristics of smooth impermeable slopes.

**Figure 2.**(

**a**) An example of the bimodal spectra. (

**b**) Shifting patterns of swell peak periods from 11–25 s [35].

**Figure 3.**(

**a**) Layout of a schematic cross-section of the wave gauges applied for reflection analysis. (

**b**) Photograph of the constructed model.

**Figure 4.**Comparison of the reflection coefficient ${K}_{r}$ and breaker parameters ${\xi}_{m-1,0}$ between unimodal and bimodal seas across three slopes for: (

**a**) cot $\alpha =3.0$, (

**b**) cot $\alpha =1.5$, and (

**c**) cot $\alpha =0.0$.

**Figure 5.**Variations of the reflection coefficient ${K}_{r}$ with breaker index ${\xi}_{m-1,0}$ across three different slopes.

**Figure 6.**Variations of the reflection coefficient ${K}_{r}$ with non-dimensional water depth $h/L$ across the three different slopes investigated.

**Figure 7.**Relationships between wave steepness and the reflection coefficient ${K}_{r}$ across the three different slopes investigated.

**Figure 8.**Influence of dimensionless crest freeboard ${R}_{c}/{H}_{m0}$ with the reflection coefficient ${K}_{r}$ across the three different slopes investigated.

**Figure 9.**A representation of the non-linear multi-regression fit between ${K}_{r}$ and ${\xi}_{m-1,0}$ for the sloping seawall with: (

**a**) cot $\alpha $ = 1.5; (

**b**) cot $\alpha $ = 3.0.

**Figure 10.**Comparison between the measured ${K}_{r}$ and the predicted ${K}_{r}$ of the wave reflection coefficient (

**a**) cot $\alpha $ = 1.5; and (

**b**) cot $\alpha $ = 3.0.

**Figure 11.**Comparison between the measured ${K}_{r}$ and the predicted ${K}_{r}$ of the wave reflection coefficient (

**a**) cot $\alpha $ = 1.5; and (

**b**) cot $\alpha $ = 3.0.

**Table 1.**Bimodal wave conditions with the peak period of wind waves (${T}_{pW}$) and peak periods of swell waves ${T}_{pS1-S4}$ tested in the present study.

Test No | ${\mathit{H}}_{\mathit{m}\mathbf{0}}$ (m) | ${\mathit{T}}_{\mathit{pW}}$ (s) | ${\mathit{T}}_{\mathit{pS}\mathbf{1}}$ (s) | ${\mathit{T}}_{\mathit{pS}\mathbf{2}}$ (s) | ${\mathit{T}}_{\mathit{pS}\mathbf{3}}$ (s) | ${\mathit{T}}_{\mathit{pS}\mathbf{4}}$ (s) | h(m) | $\mathit{cot}\mathit{\alpha}$ = 0.0 | $\mathit{cot}\mathit{\alpha}$ = 1.5 | $\mathit{cot}\mathit{\alpha}$ = 3.0 | No. of Tests |
---|---|---|---|---|---|---|---|---|---|---|---|

T001 | 0.125 | 1.11 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T002 | 0.125 | 1.26 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T003 | 0.125 | 1.42 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T004 | 0.125 | 1.58 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T005 | 0.1 | 1.11 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T006 | 0.125 | 1.26 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T007 | 0.1 | 1.42 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T008 | 0.125 | 1.58 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T009 | 0.1 | 1.11 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

T010 | 0.1 | 1.26 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

T011 | 0.125 | 1.42 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

T012 | 0.125 | 1.58 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

T013 | 0.075 | 1.11 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T014 | 0.075 | 1.26 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T015 | 0.075 | 1.42 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T016 | 0.075 | 1.58 | 1.74 | 2.37 | 3.16 | 3.95 | 0.65 | 0 | 1.5 | 3.0 | 13 |

T017 | 0.1 | 1.11 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T018 | 0.1 | 1.26 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T019 | 0.1 | 1.42 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T020 | 0.1 | 1.58 | 1.74 | 2.37 | 3.16 | 3.95 | 0.7 | 0 | 1.5 | 3.0 | 13 |

T021 | 0.075 | 1.11 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

T022 | 0.075 | 1.26 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

T023 | 0.075 | 1.42 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

T024 | 0.075 | 1.58 | 1.74 | 2.37 | 3.16 | 3.95 | 0.6 | 0 | 1.5 | 3.0 | 13 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Orimoloye, S.; Karunarathna, H.; Reeve, D.E.
Reflection Analysis of Impermeable Slopes under Bimodal Sea Conditions. *J. Mar. Sci. Eng.* **2020**, *8*, 133.
https://doi.org/10.3390/jmse8020133

**AMA Style**

Orimoloye S, Karunarathna H, Reeve DE.
Reflection Analysis of Impermeable Slopes under Bimodal Sea Conditions. *Journal of Marine Science and Engineering*. 2020; 8(2):133.
https://doi.org/10.3390/jmse8020133

**Chicago/Turabian Style**

Orimoloye, Stephen, Harshinie Karunarathna, and Dominic E. Reeve.
2020. "Reflection Analysis of Impermeable Slopes under Bimodal Sea Conditions" *Journal of Marine Science and Engineering* 8, no. 2: 133.
https://doi.org/10.3390/jmse8020133