Abstract
The shipbuilding industry relies heavily on welding, which accounts for approximately 70% of the overall production process. However, the recent decline in skilled workers, together with rising labor costs, has accelerated the automation of shipbuilding operations. In particular, the welding activities are concentrated in the double-bottom region of ships, where collaborative robots are increasingly introduced to alleviate workforce shortages. Because these robots must directly recognize U-shaped weld joints, this study proposes an image-based classification system capable of automatically identifying and classifying such joints. In double-bottom structures, U-shaped weld joints can be categorized into 176 types according to combinations of collar plate type, slot, watertight feature, and girder. To distinguish these types, deep learning-based image recognition is employed. To construct a large-scale training dataset, 3D Computer-Aided Design (CAD) models were automatically generated using Open Cascade and subsequently rendered to produce synthetic images. Furthermore, to improve classification performance, the input images were split into left, right, upper, and lower regions for both training and inference. The class definitions for each region were simplified based on the presence or absence of key features. Consequently, the classification accuracy was significantly improved compared with an approach using non-split images.