Abstract
Tsunamis and submarine earthquakes pose severe risks to coastal regions, demanding rapid and reliable monitoring systems. While the Deep-ocean Assessment and Reporting of Tsunamis (DART) system has been globally deployed, its dependence on pressure sensors and one-to-one communication limits its applicability to the Korean East Sea. This paper introduces the Korean Tsunami and Earthquake Monitoring System, which integrates seafloor seismometers and proposes a dedicated Medium Access Control (MAC) protocol optimized for multi-node underwater acoustic communication. The study performs a comprehensive analytical derivation of closed-form expressions for channel utilization and energy consumption under diverse node configurations and acoustic conditions. The analytical results confirm that the proposed MAC protocol maintains stable performance, supports multi-node operation, and enables long-term monitoring within the limited energy budget of underwater devices. The derived results also provide practical design implications for underwater network planning, including guidelines on node placement, frame duration, and control packet timing for efficient data delivery. Although empirical validation remains as future work, the findings establish theoretical benchmarks and engineering insights for the design of next-generation underwater monitoring systems tailored to Korean coastal environments.