Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (434)

Search Parameters:
Keywords = underwater acoustic networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1302 KiB  
Article
Deep Learning-Enhanced Ocean Acoustic Tomography: A Latent Feature Fusion Framework for Hydrographic Inversion with Source Characteristic Embedding
by Jiawen Zhou, Zikang Chen, Yongxin Zhu and Xiaoying Zheng
Information 2025, 16(8), 665; https://doi.org/10.3390/info16080665 - 4 Aug 2025
Viewed by 110
Abstract
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid [...] Read more.
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid inversion of oceanic hydrological parameters in complex underwater environments. Based on the open-source VTUAD (Vessel Type Underwater Acoustic Data) dataset, the method first utilizes a fine-tuned Paraformer (a fast and accurate parallel transformer) model for precise classification of sound source targets. Then, using structural causal models (SCM) and potential outcome frameworks, causal embedding vectors with physical significance are constructed. Finally, a cross-modal Transformer network is employed to fuse acoustic features, sound source priors, and environmental variables, enabling inversion of temperature and salinity in the Georgia Strait of Canada. Experimental results show that the method achieves accuracies of 97.77% and 95.52% for temperature and salinity inversion tasks, respectively, significantly outperforming traditional methods. Additionally, with GPU acceleration, the inference speed is improved by over sixfold, aimed at enabling real-time Ocean Acoustic Tomography (OAT) on edge computing platforms as smart hardware, thereby validating the method’s practicality. By incorporating causal inference and cross-modal data fusion, this study not only enhances inversion accuracy and model interpretability but also provides new insights for real-time applications of OAT. Full article
(This article belongs to the Special Issue Advances in Intelligent Hardware, Systems and Applications)
Show Figures

Figure 1

21 pages, 1681 KiB  
Article
Cross-Modal Complementarity Learning for Fish Feeding Intensity Recognition via Audio–Visual Fusion
by Jian Li, Yanan Wei, Wenkai Ma and Tan Wang
Animals 2025, 15(15), 2245; https://doi.org/10.3390/ani15152245 - 31 Jul 2025
Viewed by 300
Abstract
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems [...] Read more.
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems are severely affected by water turbidity, lighting conditions, and fish occlusion, while acoustic systems suffer from background noise. Although existing studies have attempted to combine acoustic and visual information, most adopt simple feature-level fusion strategies, which fail to fully explore the complementary advantages of the two modalities under different environmental conditions and lack dynamic evaluation mechanisms for modal reliability. To address these problems, we propose the Adaptive Cross-modal Attention Fusion Network (ACAF-Net), a cross-modal complementarity learning framework with a two-stage attention fusion mechanism: (1) a cross-modal enhancement stage that enriches individual representations through Low-rank Bilinear Pooling and learnable fusion weights; (2) an adaptive attention fusion stage that dynamically weights acoustic and visual features based on complementarity and environmental reliability. Our framework incorporates dimension alignment strategies and attention mechanisms to capture temporal–spatial complementarity between acoustic feeding signals and visual behavioral patterns. Extensive experiments demonstrate superior performance compared to single-modal and conventional fusion approaches, with 6.4% accuracy improvement. The results validate the effectiveness of exploiting cross-modal complementarity for underwater behavioral analysis and establish a foundation for intelligent aquaculture monitoring systems. Full article
Show Figures

Figure 1

19 pages, 18196 KiB  
Article
A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks
by Yuqi Zhu, Binjian Shen, Biyuan Yao and Wei Wu
J. Mar. Sci. Eng. 2025, 13(8), 1422; https://doi.org/10.3390/jmse13081422 - 25 Jul 2025
Viewed by 218
Abstract
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies [...] Read more.
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies in sound speed modeling. This study proposes and validates a three-tier calibration framework consisting of a Dynamic Single-Difference (DSD) solver, a geometrically optimized reference buoy selection algorithm, and a Virtual Beacon (VB) depth inversion method based on sound speed profiles. Through simulations under varying noise conditions, the DSD method effectively mitigates common ranging and clock errors. The geometric reference optimization algorithm enhances the selection of optimal buoy layouts and reference points. At a depth of 4 km, the VB method improves vertical positioning accuracy by 15% compared to the DSD method alone, and nearly doubles vertical accuracy compared to traditional non-differential approaches. This research demonstrates that deep-sea underwater target calibration can be achieved without high-precision time synchronization and in the presence of fixed ranging errors. The proposed framework has the potential to lower technological barriers for large-scale deep-sea network deployments and provides a robust foundation for autonomous deep-sea exploration. Full article
Show Figures

Figure 1

35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 - 24 Jul 2025
Viewed by 320
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

18 pages, 9419 KiB  
Article
STNet: Prediction of Underwater Sound Speed Profiles with an Advanced Semi-Transformer Neural Network
by Wei Huang, Junpeng Lu, Jiajun Lu, Yanan Wu, Hao Zhang and Tianhe Xu
J. Mar. Sci. Eng. 2025, 13(7), 1370; https://doi.org/10.3390/jmse13071370 - 18 Jul 2025
Viewed by 251
Abstract
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound [...] Read more.
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound field data. Although measurement techniques provide a good accuracy, they are constrained by limited spatial coverage and require a substantial time investment. The inversion method based on the real-time measurement of acoustic field data improves operational efficiency but loses the accuracy of SSP estimation and suffers from limited spatial applicability due to its stringent requirements for ocean observation infrastructures. To achieve accurate long-term ocean SSP estimation independent of real-time underwater data measurements, we propose a semi-transformer neural network (STNet) specifically designed for simulating sound velocity distribution patterns from the perspective of time series prediction. The proposed network architecture incorporates an optimized self-attention mechanism to effectively capture long-range temporal dependencies within historical sound velocity time-series data, facilitating an accurate estimation of current SSPs or prediction of future SSPs. Through the architectural optimization of the transformer framework and integration of a time encoding mechanism, STNet could effectively improve computational efficiency. For long-term forecasting (using the Pacific Ocean as a case study), STNet achieved an annual average RMSE of 0.5811 m/s, outperforming the best baseline model, H-LSTM, by 26%. In short-term forecasting for the South China Sea, STNet further reduced the RMSE to 0.1385 m/s, demonstrating a 51% improvement over H-LSTM. Comparative experimental results revealed that STNet outperformed state-of-the-art models in predictive accuracy and maintained good computational efficiency, demonstrating its potential for enabling accurate long-term full-depth ocean SSP forecasting. Full article
Show Figures

Figure 1

35 pages, 8048 KiB  
Article
Characterization and Automated Classification of Underwater Acoustic Environments in the Western Black Sea Using Machine Learning Techniques
by Maria Emanuela Mihailov
J. Mar. Sci. Eng. 2025, 13(7), 1352; https://doi.org/10.3390/jmse13071352 - 16 Jul 2025
Viewed by 215
Abstract
Growing concern over anthropogenic underwater noise, highlighted by initiatives like the Marine Strategy Framework Directive (MSFD) and its Technical Group on Underwater Noise (TG Noise), emphasizes regions like the Western Black Sea, where increasing activities threaten marine habitats. This region is experiencing rapid [...] Read more.
Growing concern over anthropogenic underwater noise, highlighted by initiatives like the Marine Strategy Framework Directive (MSFD) and its Technical Group on Underwater Noise (TG Noise), emphasizes regions like the Western Black Sea, where increasing activities threaten marine habitats. This region is experiencing rapid growth in maritime traffic and resource exploitation, which is intensifying concerns over the noise impacts on its unique marine habitats. While machine learning offers promising solutions, a research gap persists in comprehensively evaluating diverse ML models within an integrated framework for complex underwater acoustic data, particularly concerning real-world data limitations like class imbalance. This paper addresses this by presenting a multi-faceted framework using passive acoustic monitoring (PAM) data from fixed locations (50–100 m depth). Acoustic data are processed using advanced signal processing (broadband Sound Pressure Level (SPL), Power Spectral Density (PSD)) for feature extraction (Mel-spectrograms for deep learning; PSD statistical moments for classical/unsupervised ML). The framework evaluates Convolutional Neural Networks (CNNs), Random Forest, and Support Vector Machines (SVMs) for noise event classification, alongside Gaussian Mixture Models (GMMs) for anomaly detection. Our results demonstrate that the CNN achieved the highest classification accuracy of 0.9359, significantly outperforming Random Forest (0.8494) and SVM (0.8397) on the test dataset. These findings emphasize the capability of deep learning in automatically extracting discriminative features, highlighting its potential for enhanced automated underwater acoustic monitoring. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 1865 KiB  
Article
A Robust Cross-Band Network for Blind Source Separation of Underwater Acoustic Mixed Signals
by Xingmei Wang, Peiran Wu, Haisu Wei, Yuezhu Xu and Siyu Wang
J. Mar. Sci. Eng. 2025, 13(7), 1334; https://doi.org/10.3390/jmse13071334 - 11 Jul 2025
Viewed by 286
Abstract
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological [...] Read more.
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological sound coexistence. Deep learning-based BSS methods have gained wide attention for their superior nonlinear modeling capabilities. However, existing approaches in underwater acoustic scenarios still face two key challenges: limited feature discrimination and inadequate robustness against non-stationary noise. To overcome these limitations, we propose a novel Robust Cross-Band Network (RCBNet) for the BSS of underwater acoustic mixed signals. To address insufficient feature discrimination, we decompose mixed signals into sub-bands aligned with ship noise harmonics. For intra-band modeling, we apply a parallel gating mechanism that strengthens long-range dependency learning so as to enhance robustness against non-stationary noise. For inter-band modeling, we design a bidirectional-frequency RNN to capture the global dependency relationships of the same signal across sub-bands. Our experiment demonstrates that RCBNet achieves a 0.779 dB improvement in the SDR compared to the advanced model. Additionally, the anti-noise experiment demonstrates that RCBNet exhibits satisfactory robustness across varying noise environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 8011 KiB  
Article
Efficient Prediction of Shallow-Water Acoustic Transmission Loss Using a Hybrid Variational Autoencoder–Flow Framework
by Bolin Su, Haozhong Wang, Xingyu Zhu, Penghua Song and Xiaolei Li
J. Mar. Sci. Eng. 2025, 13(7), 1325; https://doi.org/10.3390/jmse13071325 - 10 Jul 2025
Viewed by 241
Abstract
Efficient prediction of shallow-water acoustic transmission loss (TL) is crucial for underwater detection, recognition, and communication systems. Traditional physical modeling methods require repeated calculations for each new scenario in practical waveguide environments, leading to low computational efficiency. Deep learning approaches, based on data-driven [...] Read more.
Efficient prediction of shallow-water acoustic transmission loss (TL) is crucial for underwater detection, recognition, and communication systems. Traditional physical modeling methods require repeated calculations for each new scenario in practical waveguide environments, leading to low computational efficiency. Deep learning approaches, based on data-driven principles, enable accurate input–output approximation and batch processing of large-scale datasets, significantly reducing computation time and cost. To establish a rapid prediction model mapping sound speed profiles (SSPs) to acoustic TL through controllable generation, this study proposes a hybrid framework that integrates a variational autoencoder (VAE) and a normalizing flow (Flow) through a two-stage training strategy. The VAE network is employed to learn latent representations of TL data on a low-dimensional manifold, while the Flow network is additionally used to establish a bijective mapping between the latent variables and underwater physical parameters, thereby enhancing the controllability of the generation process. Combining the trained normalizing flow with the VAE decoder could establish an end-to-end mapping from SSPs to TL. The results demonstrated that the VAE–Flow network achieved higher computational efficiency, with a computation time of 4 s for generating 1000 acoustic TL samples, versus the over 500 s required by the KRAKEN model, while preserving accuracy, with median structural similarity index measure (SSIM) values over 0.90. Full article
(This article belongs to the Special Issue Data-Driven Methods for Marine Structures)
Show Figures

Figure 1

46 pages, 5911 KiB  
Article
Leveraging Prior Knowledge in Semi-Supervised Learning for Precise Target Recognition
by Guohao Xie, Zhe Chen, Yaan Li, Mingsong Chen, Feng Chen, Yuxin Zhang, Hongyan Jiang and Hongbing Qiu
Remote Sens. 2025, 17(14), 2338; https://doi.org/10.3390/rs17142338 - 8 Jul 2025
Viewed by 355
Abstract
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, [...] Read more.
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, enhanced by domain-specific prior knowledge. The architecture employs a Convolutional Block Attention Module (CBAM) for localized feature refinement, a lightweight New Transformer Encoder for global context modeling, and a novel TriFusion Block to synergize spectral–temporal–spatial features through parallel multi-branch fusion, addressing the limitations of single-modality extraction. Leveraging the mean teacher framework, DART-MT optimizes consistency regularization to exploit unlabeled data, effectively mitigating class imbalance and annotation scarcity. Evaluations on the DeepShip and ShipsEar datasets demonstrate state-of-the-art accuracy: with 10% labeled data, DART-MT achieves 96.20% (DeepShip) and 94.86% (ShipsEar), surpassing baseline models by 7.2–9.8% in low-data regimes, while reaching 98.80% (DeepShip) and 98.85% (ShipsEar) with 90% labeled data. Under varying noise conditions (−20 dB to 20 dB), the model maintained a robust performance (F1-score: 92.4–97.1%) with 40% lower variance than its competitors, and ablation studies validated each module’s contribution (TriFusion Block alone improved accuracy by 6.9%). This research advances UATR by (1) resolving multi-scale feature fusion bottlenecks, (2) demonstrating the efficacy of semi-supervised learning in marine acoustics, and (3) providing an open-source implementation for reproducibility. In future work, we will extend cross-domain adaptation to diverse oceanic environments. Full article
Show Figures

Figure 1

23 pages, 37536 KiB  
Article
Underwater Sound Speed Profile Inversion Based on Res-SACNN from Different Spatiotemporal Dimensions
by Jiru Wang, Fangze Xu, Yuyao Liu, Yu Chen and Shu Liu
Remote Sens. 2025, 17(13), 2293; https://doi.org/10.3390/rs17132293 - 4 Jul 2025
Viewed by 288
Abstract
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based [...] Read more.
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based on the convolutional neural network (CNN) embedded with the residual network and self-attention mechanism. It combines the spatiotemporal characteristics of sea level anomaly (SLA) and sea surface temperature anomaly (SSTA) data and establishes a nonlinear relationship between satellite remote sensing data and sound speed field by deep learning. The single empirical orthogonal function regression (sEOF-r) method is used in a comparative experiment to confirm the model’s performance in both the time domain and the region. Experimental results demonstrate that the proposed model outperforms sEOF-r regarding both spatiotemporal generalization ability and inversion accuracy. The average root mean square error (RMSE) is decreased by 0.92 m/s in the time-domain experiment in the South China Sea, and the inversion results for each month are more consistent. The optimization ratio hits 71.8% and the average RMSE decreases by 7.39 m/s in the six-region experiment. The Res-SACNN model not only shows more superior inversion ability in the comparison with other deep-learning models, but also achieves strong generalization and real-time performance while maintaining low complexity, providing an improved technical tool for SSP estimation and sound field perception. Full article
Show Figures

Figure 1

22 pages, 5161 KiB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 277
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

33 pages, 3207 KiB  
Article
Machine Learning Ship Classifiers for Signals from Passive Sonars
by Allyson A. da Silva, Lisandro Lovisolo and Tadeu N. Ferreira
Appl. Sci. 2025, 15(13), 6952; https://doi.org/10.3390/app15136952 - 20 Jun 2025
Viewed by 419
Abstract
The accurate automatic classification of underwater acoustic signals from passive SoNaR is vital for naval operational readiness, enabling timely vessel identification and real-time maritime surveillance. This study evaluated seven supervised machine learning algorithms for ship identification using passive SoNaR recordings collected by the [...] Read more.
The accurate automatic classification of underwater acoustic signals from passive SoNaR is vital for naval operational readiness, enabling timely vessel identification and real-time maritime surveillance. This study evaluated seven supervised machine learning algorithms for ship identification using passive SoNaR recordings collected by the Brazilian Navy. The dataset encompassed 12 distinct ship classes and was processed in two ways—full-resolution and downsampled inputs—to assess the impacts of preprocessing on the model accuracy and computational efficiency. The classifiers included standard Support Vector Machines, K-Nearest Neighbors, Random Forests, Neural Networks and two less conventional approaches in this context: Linear Discriminant Analysis (LDA) and the XGBoost ensemble method. Experimental results indicate that data decimation significantly affects classification accuracy. LDA and XGBoost delivered the strongest performance overall, with XGBoost offering particularly robust accuracy and computational efficiency suitable for real-time naval applications. These findings highlight the promise of advanced machine learning techniques for complex multiclass ship classification tasks, enhancing acoustic signal intelligence for military maritime surveillance and contributing to improved naval situational awareness. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

31 pages, 6761 KiB  
Article
Improved Modulation Classification Based on Hough Transforms of Constellation Diagrams Using CNN for the UWA-OFDM Communication System
by Mohamed A. Abdel-Moneim, Mohamed K. M. Gerwash, El-Sayed M. El-Rabaie, Fathi E. Abd El-Samie, Khalil F. Ramadan and Nariman Abdel-Salam
Eng 2025, 6(6), 127; https://doi.org/10.3390/eng6060127 - 14 Jun 2025
Viewed by 430
Abstract
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based [...] Read more.
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based on the adoption of Hough Transform (HT) and Edge Detection (ED) to enhance modulation classification, especially for a small dataset. Deep neural models based on basic Convolutional Neural Network (CNN), Visual Geometry Group-16 (VGG-16), and VGG-19 trained on constellation diagrams transformed using HT are adopted. The objective is to extract features from constellation diagrams projected onto the Hough space. In addition, we use Orthogonal Frequency Division Multiplexing (OFDM) technology, which is frequently utilized in UWA systems because of its ability to avoid multipath fading and enhance spectrum utilization. We use an OFDM system with the Discrete Cosine Transform (DCT), Cyclic Prefix (CP), and equalization over the UWA communication channel under the effect of estimation errors. Seven modulation types are considered for classification, including Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) (2/8/16-PSK and 4/8/16/32-QAM), with a Signal-to-Noise Ratio (SNR) ranging from −5 to 25 dB. Simulation results indicate that our CNN model with HT and ED at perfect channel estimation, achieves a 94% classification accuracy at 10 dB SNR, outperforming benchmark models by approximately 40%. Full article
Show Figures

Figure 1

17 pages, 1538 KiB  
Article
AI-Driven Adaptive Communications for Energy-Efficient Underwater Acoustic Sensor Networks
by A. Ur Rehman, Laura Galluccio and Giacomo Morabito
Sensors 2025, 25(12), 3729; https://doi.org/10.3390/s25123729 - 14 Jun 2025
Viewed by 795
Abstract
Underwater acoustic sensor networks, crucial for marine monitoring, face significant challenges, including limited bandwidth, high delay, and severe energy constraints. Addressing these limitations requires an energy-efficient design to ensure network survivability, reliability, and reduced operational costs. This paper proposes an artificial intelligence-driven framework [...] Read more.
Underwater acoustic sensor networks, crucial for marine monitoring, face significant challenges, including limited bandwidth, high delay, and severe energy constraints. Addressing these limitations requires an energy-efficient design to ensure network survivability, reliability, and reduced operational costs. This paper proposes an artificial intelligence-driven framework aimed at enhancing energy efficiency and sustainability in applications of marine wildlife monitoring in underwater sensor networks, according to the vision of implementing an underwater acoustic sensor network. The framework integrates intelligent computing directly into underwater sensor nodes, employing lightweight AI models to locally classify marine species. Transmitting only classification results, instead of raw data, significantly reduces data volume, thus conserving energy. Additionally, a software-defined radio methodology dynamically adapts transmission parameters such as modulation schemes, packet length, and transmission power to further minimize energy consumption and environmental disruption. GNU Radio simulations evaluate the framework effectiveness using metrics like energy consumption, bit error rate, throughput, and delay. Adaptive transmission strategies implicitly ensure reduced energy usage as compared to non-adaptive transmission solutions employing fixed communication parameters. The results illustrate the framework ability to effectively balance energy efficiency, performance, and ecological impact. This research contributes directly to ongoing development in sustainable and energy-efficient underwater wireless sensor network design and deployment. Full article
(This article belongs to the Special Issue Energy Efficient Design in Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

16 pages, 1439 KiB  
Article
An Underwater Acoustic Communication Signal Modulation-Style Recognition Algorithm Based on Dual-Feature Fusion and ResNet–Transformer Dual-Model Fusion
by Fanyu Zhou, Haoran Wu, Zhibin Yue and Han Li
Appl. Sci. 2025, 15(11), 6234; https://doi.org/10.3390/app15116234 - 1 Jun 2025
Cited by 1 | Viewed by 508
Abstract
Traditional underwater acoustic reconnaissance technologies are limited in directly detecting underwater acoustic communication signals. This paper proposes a dual-feature ResNet–Transformer model with two innovative breakthroughs: (1) A dual-modal fusion architecture of ResNet and Transformer is constructed using residual connections to alleviate gradient degradation [...] Read more.
Traditional underwater acoustic reconnaissance technologies are limited in directly detecting underwater acoustic communication signals. This paper proposes a dual-feature ResNet–Transformer model with two innovative breakthroughs: (1) A dual-modal fusion architecture of ResNet and Transformer is constructed using residual connections to alleviate gradient degradation in deep networks and combining multi-head self-attention to enhance long-distance dependency modeling. (2) The time–frequency representation obtained from the smooth pseudo-Wigner–Ville distribution is used as the first input branch, and higher-order statistics are introduced as the second input branch to enhance phase feature extraction and cope with channel interference. Experiments on the Danjiangkou measured dataset show that the model improves the accuracy by 6.67% compared with the existing Convolutional Neural Network (CNN)–Transformer model in long-distance ranges, providing an efficient solution for modulation recognition in complex underwater acoustic environments. Full article
Show Figures

Figure 1

Back to TopTop