Rare Earth Elements and Yttrium in Seawater and Sediments of Contaminated Pula Bay
Abstract
1. Introduction
2. Materials and Methods
2.1. Seawater Sampling and Sample Preparation
2.2. Sediment Sampling and Sample Preparation
2.3. REY Analyses
2.4. Data Interpretation
3. Results and Discussion
3.1. Drivers of Dissolved REY Distribution in Surface Waters
3.1.1. Spatial Distribution of Dissolved REY
3.1.2. Geochemical Signatures and Anomalies
3.1.3. Gadolinium Anomalies and Anthropogenic Tracing
3.2. REY Signatures and Controlling Factors in Sediments
3.2.1. Concentrations and Regional Comparison
3.2.2. Geochemical Patterns, Spatial Distribution, and Natural Controls
3.2.3. Anthropogenic Influences
3.3. Pollution and Ecological Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, D.H.; Wang, W.; Sikma, A.; Chatzis, A.; Mucci, A. The Contrasting Estuarine Geochemistry of Rare Earth Elements between Ice-Covered and Ice-Free Conditions. Geochim. Cosmochim. Acta 2022, 317, 488–506. [Google Scholar] [CrossRef]
- Brito, P.; Prego, R.; Mil-Homens, M.; Caçador, I.; Caetano, M. Sources and Distribution of Yttrium and Rare Earth Elements in Surface Sediments from Tagus Estuary, Portugal. Sci. Total Environ. 2018, 621, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Barrat, J.A.; Bayon, G. Practical Guidelines for Representing and Interpreting Rare Earth Abundances in Environmental and Biological Studies. Chemosphere 2024, 352, 141487. [Google Scholar] [CrossRef] [PubMed]
- Hatje, V.; Schijf, J.; Johannesson, K.H.; Andrade, R.; Caetano, M.; Brito, P.; Haley, B.A.; Lagarde, M.; Jeandel, C. The Global Biogeochemical Cycle of the Rare Earth Elements. Global. Biogeochem. Cycles 2024, 38, e2024GB008125. [Google Scholar] [CrossRef]
- Rétif, J.; Zalouk-Vergnoux, A.; Briant, N.; Poirier, L. From Geochemistry to Ecotoxicology of Rare Earth Elements in Aquatic Environments: Diversity and Uses of Normalization Reference Materials and Anomaly Calculation Methods. Sci. Total Environ. 2023, 856, 158890. [Google Scholar] [CrossRef]
- Pedreira, R.M.A.; Pahnke, K.; Böning, P.; Hatje, V. Tracking Hospital Effluent-Derived Gadolinium in Atlantic Coastal Waters off Brazil. Water Res. 2018, 145, 62–72. [Google Scholar] [CrossRef]
- Lerat-Hardy, A.; Coynel, A.; Dutruch, L.; Pereto, C.; Bossy, C.; Gil-Diaz, T.; Capdeville, M.J.; Blanc, G.; Schäfer, J. Rare Earth Element Fluxes over 15 years into a Major European Estuary (Garonne-Gironde, SW France): Hospital Effluents as a Source of Increasing Gadolinium Anomalies. Sci. Total Environ. 2019, 656, 409–420. [Google Scholar] [CrossRef]
- Eggert, R.G. Minerals Go Critical. Nat. Chem. 2011, 3, 688–691. [Google Scholar] [CrossRef]
- Filella, M.; Rodríguez-Murillo, J.C. Less-Studied TCE: Are Their Environmental Concentrations Increasing Due to Their Use in New Technologies? Chemosphere 2017, 182, 605–616. [Google Scholar] [CrossRef]
- Balaram, V. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Trapasso, G.; Chiesa, S.; Freitas, R.; Pereira, E. What Do We Know about the Ecotoxicological Implications of the Rare Earth Element Gadolinium in Aquatic Ecosystems? Sci. Total Environ. 2021, 781, 146273. [Google Scholar] [CrossRef]
- Panichev, A.M. Rare Earth Elements: Review of Medical and Biological Properties and Their Abundance in the Rock Materials and Mineralized Spring Waters in the Context of Animal and Human Geophagia Reasons Evaluation. Achiev. Life Sci. 2015, 9, 95–103. [Google Scholar] [CrossRef]
- Pereto, C.; Baudrimont, M.; Coynel, A. Global Natural Concentrations of Rare Earth Elements in Aquatic Organisms: Progress and Lessons from Fifty Years of Studies. Sci. Total Environ. 2024, 922, 171241. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.; Grilo, T.F.; Lopes, A.R.; Lopes, C.; Brito, P.; Caetano, M.; Raimundo, J. Differential Tissue Accumulation in the Invasive Manila Clam, Ruditapes Philippinarum, under Two Environmentally Relevant Lanthanum Concentrations. Environ. Monit. Assess. 2022, 194, 11. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; van Drimmelen, C.K.E.; Weltje, L.; Hursthouse, A.; Heise, S. Effects of Rare Earth Elements in the Aquatic Environment: Implications for Ecotoxicological Testing. Crit. Rev. Environ. Sci. Technol. 2024, 55, 334–375. [Google Scholar] [CrossRef]
- Zhang, K.; Zocher, A.-L.; Bau, M. Rare Earth Element and Yttrium Behaviour during Metabolic Transfer and Biomineralisation in the Marine Bivalve Mytilus Edulis: Evidence for a (Partially) Biological Origin of REY Anomalies in Mussel Shells. Sci. Total Environ. 2025, 958, 178056. [Google Scholar] [CrossRef]
- Brouziotis, A.A.A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of Rare Earth Elements: An Overview on Human Health Impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Secco, S.; Cunha, M.; Libralato, G.; Trifuoggi, M.; Giarra, A.; Soares, A.M.V.M.; Freitas, R.; Scalici, M. Evaluating the Impact of Gadolinium Contamination on the Marine Bivalve Donax Trunculus: Implications for Environmental Health. Environ. Toxicol. Pharmacol. 2024, 112, 104580. [Google Scholar] [CrossRef]
- Leite, C.; Russo, T.; Pinto, J.; Polese, G.; Soares, A.M.V.M.; Pretti, C.; Pereira, E.; Freitas, R. From the Cellular to Tissue Alterations Induced by Two Rare Earth Elements in the Mussel Species Mytilus Galloprovincialis: Comparison between Exposure and Recovery Periods. Sci. Total Environ. 2024, 915, 169754. [Google Scholar] [CrossRef]
- Freitas, R.; Cardoso, C.E.D.; Costa, S.; Morais, T.; Moleiro, P.; Lima, A.F.D.; Soares, M.; Figueiredo, S.; Águeda, T.L.; Rocha, P.; et al. New Insights on the Impacts of E-Waste towards Marine Bivalves: The Case of the Rare Earth Element Dysprosium. Environ. Pollut. 2020, 260, 113859. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. J. Sustain. Metall. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Jha, A.R. Rare Earth Materials: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kaegi, R.; Gogos, A.; Voegelin, A.; Hug, S.J.; Winkel, L.H.; Buser, A.M.; Berg, M. Quantification of Individual Rare Earth Elements from Industrial Sources in Sewage Sludge. Water Res. X 2021, 11, 100092. [Google Scholar] [CrossRef] [PubMed]
- Atinkpahoun, C.N.H.; Pons, M.-N.; Louis, P.; Leclerc, J.-P.; Soclo, H.H. Rare Earth Elements (REE) in the Urban Wastewater of Cotonou (Benin, West Africa). Chemosphere 2020, 251, 126398. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, H.; Kim, G. Tracing River Water versus Wastewater Sources of Trace Elements Using Rare Earth Elements in the Nakdong River Estuarine Waters. Mar. Pollut. Bull. 2020, 160, 111589. [Google Scholar] [CrossRef]
- Di Cesare, A.; Pjevac, P.; Eckert, E.; Curkov, N.; Miko Šparica, M.; Corno, G.; Orlić, S. The Role of Metal Contamination in Shaping Microbial Communities in Heavily Polluted Marine Sediments. Environ. Pollut. 2020, 265, 114823. [Google Scholar] [CrossRef]
- Grozdanić, O.; Cindrić, A.-M.; Finderle, I.; Omanović, D. Examining the Impact of Long-Term Industrialization on the Trace Metal Contaminants Distribution in Seawater of the Pula Bay, Croatia. J. Mar. Sci. Eng. 2024, 12, 440. [Google Scholar] [CrossRef]
- Fiket, Ž.; Mikac, N.; Kniewald, G. Influence of the Geological Setting on the REE Geochemistry of Estuarine Sediments: A Case Study of the Zrmanja River Estuary (Eastern Adriatic Coast). J. Geochem. Explor. 2017, 182, 70–79. [Google Scholar] [CrossRef]
- Fiket, Ž.; Mlakar, M.; Kniewald, G. Distribution of Rare Earth Elements in Sediments of the Marine Lake Mir (Dugi Otok, Croatia). Geosciences 2018, 8, 301. [Google Scholar] [CrossRef]
- Cukrov, N.; Frančišković-Bilinski, S.; Hlača, B.; Barišić, D. A Recent History of Metal Accumulation in the Sediments of Rijeka Harbor, Adriatic Sea, Croatia. Mar. Pollut. Bull. 2011, 62, 154–167. [Google Scholar] [CrossRef]
- Fisher, A.; Kara, D. Determination of Rare Earth Elements in Natural Water Samples—A Review of Sample Separation, Preconcentration and Direct Methodologies. Anal. Chim. Acta 2016, 935, 1–29. [Google Scholar] [CrossRef]
- Wysocka, I. Determination of Rare Earth Elements Concentrations in Natural Waters—A Review of ICP-MS Measurement Approaches. Talanta 2021, 221, 121636. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R. Determination of Rare Earth Elements after Pre-Concentration Using NOBIAS-Chelate PA-1®resin: Method Development and Application in the San Francisco Bay Plume. Mar. Chem. 2014, 160, 34–41. [Google Scholar] [CrossRef]
- Behrens, M.K.; Muratli, J.; Pradoux, C.; Wu, Y.; Böning, P.; Brumsack, H.-J.J.; Goldstein, S.L.; Haley, B.; Jeandel, C.; Paffrath, R.; et al. Rapid and Precise Analysis of Rare Earth Elements in Small Volumes of Seawater—Method and Intercomparison. Mar. Chem. 2016, 186, 110–120. [Google Scholar] [CrossRef]
- Soto-Jiménez, M.F.F.; Martinez-Salcido, A.I.I.; Morton-Bermea, O.; Ochoa-Izaguirre, M.J.J. Lanthanoid Analysis in Seawater by SeaFAST-SP3TM System in off-Line Mode and Magnetic Sector High-Resolution Inductively Coupled Plasma Source Mass Spectrometer. MethodsX 2022, 9, 101625. [Google Scholar] [CrossRef]
- Takata, H.; Tagami, K.; Aono, T.; Uchida, S. Determination of Trace Levels of Yttrium and Rare Earth Elements in Estuarine and Coastal Waters by Inductively Coupled Plasma Mass Spectrometry Following Preconcentration with NOBIAS-CHELATE Resin. At. Spectrosc. 2009, 30, 10–19. [Google Scholar]
- Sohrin, Y.; Urushihara, S.; Nakatsuka, S.; Kono, T.; Higo, E.; Minami, T.; Norisuye, K.; Umetani, S. Multielemental Determination of GEOTRACES Key Trace Metals in Seawater by ICPMS after Preconcentration Using an Ethylenediaminetriacetic Acid Chelating Resin. Anal. Chem. 2008, 80, 6267–6273. [Google Scholar] [CrossRef] [PubMed]
- Biller, D.V.; Bruland, K.W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in Seawater Using the Nobias-Chelate PA1 Resin and Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Mar. Chem. 2012, 130–131, 12–20. [Google Scholar] [CrossRef]
- Yeghicheyan, D.; Aubert, D.; Bouhnik-Le Coz, M.; Chmeleff, J.; Delpoux, S.; Djouraev, I.; Granier, G.; Lacan, F.; Piro, J.L.; Rousseau, T.; et al. A New Interlaboratory Characterisation of Silicon, Rare Earth Elements and Twenty-Two Other Trace Element Concentrations in the Natural River Water Certified Reference Material SLRS-6 (NRC-CNRC). Geostand. Geoanal. Res. 2019, 43, 475–496. [Google Scholar] [CrossRef]
- Ebeling, A.; Zimmermann, T.; Klein, O.; Irrgeher, J.; Pröfrock, D. Analysis of Seventeen Certified Water Reference Materials for Trace and Technology-Critical Elements. Geostand. Geoanal. Res. 2022, 46, 351–378. [Google Scholar] [CrossRef]
- Fiket, Ž.; Mikac, N.; Kniewald, G. Mass Fractions of Forty-six Major and Trace Elements, Including Rare Earth Elements, in Sediment and Soil Reference Materials Used in Environmental Studies. Geostand. Geoanal. Res. 2017, 41, 123–135. [Google Scholar] [CrossRef]
- Bau, M. Rare-Earth Element Mobility During Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A Novel Extraction Chromatography and MC-ICP-MS Technique for Rapid Analysis of REE, Sc and Y: Revising CI-Chondrite and Post-Archean Australian Shale (PAAS) Abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- McLennan, S.M. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In Geochemistry and Mineralogy of Rare Earth Elements; Bruce, R.L., McKay, G.A., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1989; pp. 169–200. [Google Scholar]
- Bau, M.; Schmidt, K.; Pack, A.; Bendel, V.; Kraemer, D. The European Shale: An Improved Data Set for Normalisation of Rare Earth Element and Yttrium Concentrations in Environmental and Biological Samples from Europe. Appl. Geochem. 2018, 90, 142–149. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar]
- O’Neill, H.S.C. The Smoothness and Shapes of Chondrite-Normalized Rare Earth Element Patterns in Basalts. J. Petrol. 2016, 57, 1463–1508. [Google Scholar] [CrossRef]
- Ernst, D.M.; Vogt, J.; Bau, M.; Mues, M. Polynomial Modelling of High-Quality yet Incomplete Rare Earth Element Data Sets and a Holistic Assessment of REE Anomalies. Sci. Rep. 2025, 15, 5360. [Google Scholar] [CrossRef]
- Lawrence, M.G. Detection of Anthropogenic Gadolinium in the Brisbane River Plume in Moreton Bay, Queensland, Australia. Mar. Pollut. Bull. 2010, 60, 1113–1116. [Google Scholar] [CrossRef]
- Möller, P.; Paces, T.; Dulski, P.; Morteani, G. Anthropogenic Gd in Surface Water, Drainage System, and the Water Supply of the City of Prague, Czech Republic. Environ. Sci. Technol. 2002, 36, 2387–2394. [Google Scholar] [CrossRef]
- Cobelo-García, A.; Bernárdez, P.; Mendoza-Segura, C.; González-Ortegón, E.; Sánchez-Quiles, D.; Sánchez-Leal, R.; Tovar-Sánchez, A. Rare Earth Elements Distribution in the Gulf of Cádiz (SW Spain): Geogenic vs. Anthropogenic Influence. Front. Mar. Sci. 2024, 11, 1304362. [Google Scholar] [CrossRef]
- Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 1 September 2025).
- QGIS Development Team. QGIS Geographic Information System (Version 3.36). Open Source Geospatial Foundation Project. 2014. Available online: https://qgis.org (accessed on 1 September 2025).
- Schlitzer, R. Interactive Analysis and Visualization of Geoscience Data with Ocean Data View. Comput. Geosci. 2002, 28, 1211–1218. [Google Scholar] [CrossRef]
- European Environment Agency. EEA Coastline for Analysis (Polygon), Version 3.0 [ESRI Shapefile]. DAT-132-En. CC-BY 4.0. 2017. Available online: https://sdi.eea.europa.eu/catalogue/geoss/api/records/9faa6ea1-372a-4826-a3c7-fb5b05e31c52 (accessed on 1 December 2025).
- Al Momani, D.E.; Al Ansari, Z.; Ouda, M.; Abujayyab, M.; Kareem, M.; Agbaje, T.; Sizirici, B. Occurrence, Treatment, and Potential Recovery of Rare Earth Elements from Wastewater in the Context of a Circular Economy. J. Water Process. Eng. 2023, 55, 104223. [Google Scholar] [CrossRef]
- Garcia-Solsona, E.; Jeandel, C. Balancing Rare Tarth Tlement Distributions in the Northwestern Mediterranean Sea. Chem. Geol. 2020, 532, 119372. [Google Scholar] [CrossRef]
- Garcia-Solsona, E.; Pena, L.D.; Paredes, E.; Pérez-Asensio, J.N.; Quirós-Collazos, L.; Lirer, F.; Cacho, I. Rare Earth Elements and Nd Isotopes as Tracers of Modern Ocean Circulation in the Central Mediterranean Sea. Prog. Oceanogr. 2020, 185, 102340. [Google Scholar] [CrossRef]
- Lagarde, M.; Pham, V.Q.; Lherminier, P.; Belhadj, M.; Jeandel, C. Rare Earth Elements in the North Atlantic, Part I: Non-Conservative Behavior Reveals Margin Inputs and Deep Waters Scavenging. Chem. Geol. 2024, 664, 122230. [Google Scholar] [CrossRef]
- Luong, L.D.; Shinjo, R.; Hoang, N.; Shakirov, R.B.; Syrbu, N. Spatial Variations in Dissolved Rare Earth Element Concentrations in the East China Sea Water Column. Mar. Chem. 2018, 205, 1–15. [Google Scholar] [CrossRef]
- Yu, Z.; Colin, C.; Douville, E.; Meynadier, L.; Duchamp-Alphonse, S.; Sepulcre, S.; Wan, S.; Song, L.; Wu, Q.; Xu, Z.; et al. Yttrium and Rare Earth Element Partitioning in Seawaters from the Bay of Bengal. Geochem. Geophys. Geosyst. 2017, 18, 1388–1403. [Google Scholar] [CrossRef]
- Laukert, G.; Frank, M.; Bauch, D.; Hathorne, E.C.; Rabe, B.; von Appen, W.J.; Wegner, C.; Zieringer, M.; Kassens, H. Ocean Circulation and Freshwater Pathways in the Arctic Mediterranean Based on a Combined Nd Isotope, REE and Oxygen Isotope Section across Fram Strait. Geochim. Cosmochim. Acta 2017, 202, 285–309. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R.R. Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record. Environ. Sci. Technol. 2016, 50, 4159–4198. [Google Scholar] [CrossRef]
- Rétif, J.; Briant, N.; Zalouk-Vergnoux, A.; Le Monier, P.; Sireau, T.; Poirier, L. Distribution of Rare Earth Elements and Assessment of Anthropogenic Gadolinium in Estuarine Habitats: The Case of Loire and Seine Estuaries in France. Sci. Total Environ. 2024, 922, 171385. [Google Scholar] [CrossRef]
- Martinez-Salcido, A.I.; Morton-Bermea, O.; Ochoa-Izaguirre, M.J.; Soto-Jiménez, M.F. Geogenic Lanthanoid Signature in Coastal and Marine Waters from the Southern Gulf of California. Mar. Pollut. Bull. 2021, 173, 112942. [Google Scholar] [CrossRef]
- Fiket, Ž.; Rožmarić, M.; Krmpotić, M.; Benedik, L. Levels of Major and Trace Elements, Including Rare Earth Elements, and 238U in Croatian Tap Waters. Environ. Sci. Pollut. Res. 2015, 22, 6789–6799. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Kamber, B.S. The Behaviour of the Rare Earth Elements during Estuarine Mixing-Revisited. Mar. Chem. 2006, 100, 147–161. [Google Scholar] [CrossRef]
- Samanta, S.K.; Mitra, S.K.; Pal, T.K. Effect of Rare Earth Elements on Microstructure and Oxidation Behaviour in TIG Weldments of AISI 316L Stainless Steel. Mater. Sci. Eng. A 2006, 430, 242–247. [Google Scholar] [CrossRef]
- Wang, K.; Lu, Q.; Jiang, Z.; Yi, Y.; Yi, J.; Niu, B.; Ma, J.; Hu, H. Effect of Rare-Earth Elements on the Corrosion Resistance of Flux-Cored Arc-Welded Metal with 10CrNi3MoV Steel. Int. J. Corros. 2018, 2018, 4071352. [Google Scholar] [CrossRef]
- Schijf, J.; Christy, I.J. Effect of Mg and Ca on the Stability of the MRI Contrast Agent Gd–DTPA in Seawater. Front. Mar. Sci. 2018, 5, 111. [Google Scholar] [CrossRef]
- Alemu, A.K.; Zhang, K.; Ernst, D.M.; Bau, M. Rare Earth Elements and Yttrium in Polish Rivers and the Input of Anthropogenic Gadolinium into the Baltic Sea. Environ. Pollut. 2025, 376, 126370. [Google Scholar] [CrossRef]
- Morteani, G.; Möller, P.; Fuganti, A.; Paces, T. Input and Fate of Anthropogenic Estrogens and Gadolinium in Surface Water and sewage Plants in the Hydrological Basin of Prague (Czech Republic). Environ. Geochem. Health 2006, 28, 257–264. [Google Scholar] [CrossRef]
- Zocher, A.-L.; Ciesielski, T.M.; Piarulli, S.; Farkas, J.; Bau, M. Tracing Emerging Contaminants from the Baltic Sea and North Sea in Fjord Waters in Southern Norway with Rare Earth Elements as Far-Field Tracers. Environ. Pollut. 2025, 374, 126124. [Google Scholar] [CrossRef]
- Durn, G.; Perković, I.; Stummeyer, J.; Ottner, F.; Mileusnić, M. Differences in the Behaviour of Trace and Rare-Earth Elements in Oxidizing and Reducing Soil Environments: Case Study of Terra Rossa Soils and Cretaceous Palaeosols from the Istrian Peninsula, Croatia. Chemosphere 2021, 283, 131286. [Google Scholar] [CrossRef]
- Pitchaimani, G.P.; Muthuswamy Ponniah, J.; Rodríguez-Espinosa, P.F.; Roy, P.D.; Jiménez, J.D.Q.; Pérez-Rodríguez, S. Rare Earth Element (REEs) Imprints and Provenance of Wetland Sediments from Oaxaca Coast, Mexico. Mar. Pollut. Bull. 2025, 212, 117506. [Google Scholar] [CrossRef] [PubMed]
- You, C.-F.F.; Liao, W.-L.L.; Huang, K.-F.F.; Chung, C.-H.H.; Liu, Z. Sediment Source Variation Using REEs, Sr, and Nd Isotopic Compositions: A Case Study in MD05-2901, Northwestern South China Sea. Front. Mar. Sci. 2024, 10, 1292802. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jung, H.S.; Choi, M.S.; Li, C.X. The Rare Earth Element Compositions of the Changjiang (Yangtze) and Huanghe (Yellow) River Sediments. Earth Planet. Sci. Lett. 2002, 201, 407–419. [Google Scholar] [CrossRef]
- Lécuyer, C.; Reynard, B.; Grandjean, P. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chem. Geol. 2004, 204, 63–102. [Google Scholar] [CrossRef]
- Hannigan, R.E.; Sholkovitz, E.R. The Development of Middle Rare Earth Element Enrichments in Freshwaters: Weathering of Phosphate Minerals. Chem. Geol. 2001, 175, 495–508. [Google Scholar] [CrossRef]
- Soroaga, L.V.; Amarandei, C.; Negru, A.G.; Olariu, R.I.; Arsene, C. Assessment of the Anthropogenic Impact and Distribution of Potentially Toxic and Rare Earth Elements in Lake Sediments from North-Eastern Romania. Toxics 2022, 10, 242. [Google Scholar] [CrossRef]
- Freslon, N.; Bayon, G.; Toucanne, S.; Bermell, S.; Bollinger, C.; Chéron, S.; Etoubleau, J.; Germain, Y.; Khripounoff, A.; Ponzevera, E.; et al. Rare Earth Elements and Neodymium Isotopes in Sedimentary Organic Matter. Geochim. Cosmochim. Acta 2014, 140, 177–198. [Google Scholar] [CrossRef]
- Mei, W.; Cai, C.; Ming, X.; Wang, Z.; Jiang, L. Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China. Minerals 2025, 15, 581. [Google Scholar] [CrossRef]
- Consani, S.; Cutroneo, L.; Carbone, C.; Capello, M. Baseline of Distribution and Origin of Rare Earth Elements in Marine Sediment of the Coastal Area of the Eastern Gulf of Tigullio (Ligurian Sea, North-West Italy). Mar. Pollut. Bull. 2020, 155, 111145. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The Story of Rare Earth Elements (REEs): Occurrences, Global Distribution, Genesis, Geology, Mineralogy and Global Production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Brioschi, L.; Steinmann, M.; Lucot, E.; Pierret, M.-C.; Stille, P.; Prunier, J.; Badot, P.-M. Transfer of Rare Earth Elements (REE) from Natural Soil to Plant Systems: Implications for the Environmental Availability of Anthropogenic REE. Plant Soil 2013, 366, 143–163. [Google Scholar] [CrossRef]
- Mejjad, N.; Laissaoui, A.; Benmhammed, A.; Fekri, A.; El Hammoumi, O.; Benkdad, A.; Amsil, H.; Chakir, E.M. Potential Ecological Risk Assessment of Rare Earth Elements in Sediments Cores from the Oualidia Lagoon, Morocco. Soil Sediment Contam. Int. J. 2022, 31, 941–958. [Google Scholar] [CrossRef]
- Basallote, M.D.; Méndez, A.; León, R.; Olías, M.; Freydier, R.; Pérez-López, R.; Ruiz Cánovas, C. Labile Fraction-Based Assessment of Rare Earth Elements in Contaminated Sediments. Environ. Pollut. 2025, 387, 127304. [Google Scholar] [CrossRef] [PubMed]
- Badawy, W.; Elsenbawy, A.; Dmitriev, A.; El Samman, H.; Shcheglov, A.; El-Gamal, A.; Kamel, N.H.M.; Mekewi, M. Characterization of Major and Trace Elements in Coastal Sediments along the Egyptian Mediterranean Sea. Mar. Pollut. Bull. 2022, 177, 113526. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gu, X.; Lian, M.; Wang, J.; Xin, M.; Wang, B.; Ouyang, W.; He, M.; Liu, X.; Lin, C. Occurrence, Geochemical Characteristics, Enrichment, and Ecological Risks of Rare Earth Elements in Sediments of “the Yellow River−Estuary−bay” System. Environ. Pollut. 2023, 319, 121025. [Google Scholar] [CrossRef]
- Chen, F.; Gu, Y.-G.; Ma, S.-Z.; Wang, Y.-M.; Yu, S.-H.; Zhou, Y.; Wu, C.; Peng, Z.-Y. Rare Earth Elements in Sediments of the Pearl River Estuary, China: Distribution, Influencing Factors, and Multi-Index Assessment. J. Soils Sediments 2024, 24, 956–969. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.Z.Z.Z.; Chen, Z.Z.Z.Z.; Ou, X.; Chen, J. Calculation of Toxicity Coefficient of Potential Ecological Risk Assessment of Rare Earth Elements. Bull. Environ. Contam. Toxicol. 2020, 104, 582–587. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Wang, X.-N.; Wang, Z.-H.; Jordan, R.W.; Jiang, S.-J. Rare Earth Elements in Sediments from a Representative Chinese Mariculture Bay: Characterization, DGT-Based Bioaccessibility, and Probabilistic Ecological Risk. Environ. Pollut. 2023, 335, 122338. [Google Scholar] [CrossRef]
- Pastorino, P.; Brizio, P.; Abete, M.C.; Bertoli, M.; Oss Noser, A.G.; Piazza, G.; Prearo, M.; Elia, A.C.; Pizzul, E.; Squadrone, S. Macrobenthic Invertebrates as Tracers of Rare Earth Elements in Freshwater Watercourses. Sci. Total Environ. 2020, 698, 134282. [Google Scholar] [CrossRef]
- Bonnail, E.; Pérez-López, R.; Sarmiento, A.M.; Nieto, J.M.; DelValls, T.Á. A Novel Approach for Acid Mine Drainage Pollution Biomonitoring Using Rare Earth Elements Bioaccumulated in the Freshwater Clam Corbicula Fluminea. J. Hazard. Mater. 2017, 338, 466–471. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, L.; Xiang, H.; Qin, X.; Wang, S. Accumulation Patterns and Species-Specific Characteristics of Yttrium and Rare Earth Elements (YREEs) in Biological Matrices from Maluan Bay, China: Implications for Biomonitoring. Environ. Res. 2019, 179, 108804. [Google Scholar] [CrossRef]
- Ma, L.; Dang, D.H.; Wang, W.; Evans, R.D.; Wang, W.X. Rare Earth Elements in the Pearl River Delta of China: Potential Impacts of the REE Industry on Water, Suspended Particles and Oysters. Environ. Pollut. 2019, 244, 190–201. [Google Scholar] [CrossRef]
- Figueiredo, C.; Grilo, T.F.; Oliveira, R.; Ferreira, I.J.; Gil, F.; Lopes, C.; Brito, P.; Ré, P.; Caetano, M.; Diniz, M.; et al. A Triple Threat: Ocean Warming, Acidification, and Rare Earth Elements Exposure Triggers a Superior Antioxidant Response and Pigment Production in the Adaptable Ulva Rigida. Environ. Adv. 2022, 8, 100235. [Google Scholar] [CrossRef]
- Leite, C.; Russo, T.; Cuccaro, A.; Pinto, J.; Polese, G.; Soares, A.M.; Pretti, C.; Pereira, E.; Freitas, R. The Role of Warming in Modulating Neodymium Effects on Adults and Sperm of Mytilus Galloprovincialis. J. Environ. Manag. 2024, 358, 120854. [Google Scholar] [CrossRef]
- Şahin, B.; Belivermiş, M.; Demiralp, S.; Sezer, N.; Bektaş, S.; Kaptan, E.; Gönülal, O.; Kılıç, Ö. The Multistressor Effect of PH Reduction, Microplastic and Lanthanum on Sea Urchin Arbacia Lixula. Mar. Pollut. Bull. 2024, 205, 116638. [Google Scholar] [CrossRef]
- Gu, Y.G.; Gao, Y.P.; Huang, H.H.; Wu, F.X. First Attempt to Assess Ecotoxicological Risk of Fifteen Rare Earth Elements and Their Mixtures in Sediments with Diffusive Gradients in Thin Films. Water Res. 2020, 185, 116254. [Google Scholar] [CrossRef]




| Pula Bay, Croatia * | Gulf of Cádiz, Spain [51] | Northwest Mediterranean Sea (Depth < 50 m) [61] ** | Bay of Bengal (Depth < 50 m) [64] ** | Bay of Biscay (Loire River outlet), France [67] | San Francisco Bay, California [66] ** | Gulf of California (20 km Offshore) [68] | |
|---|---|---|---|---|---|---|---|
| Y | 19.75–24.2 (20.90) | - | - | 14.35–35.49 (23.58) | - | - | - |
| La | 3.36–9.88 (4.81) | 3.60 ± 1.0 | 3.80 ± 0.22 | 2.76–8.93 (5.17) | 9.97–12.96 (11.72) | 6.16–27.78 (11.21) | 0.70–30.63 |
| Ce | 3.37–17.87 (5.98) | 3.40 ± 1.90 | 3.22 ± 1.16 | 1.84–5.98 (3.13) | 13.46–16.82 (15.35) | 4.28–37.90 (12.10) | 1.18–49.96 |
| Pr | 0.46–1.42 (0.65) | 0.72 ± 0.23 | 0.82 ± 0.04 | - | 2.05–2.77 (2.40) | 1.10–8.65 (2.71) | 0.12–5.15 |
| Nd | 3.10–6.81 (3.95) | 3.30 ± 1.0 | 3.84 ± 0.24 | 2.35–7.64 (4.47) | 8.03–10.82 (9.35) | 5.25–39.45 (12.64) | 0.54–18.7 |
| Sm | 0.49–1.34 (0.88) | 0.72 ± 0.23 | 0.91 ± 0.06 | 0.54–1.81 (1.13) | 2.08–2.80 (2.46) | 1.21–9.65 (3.07) | 0.17–3.55 |
| Eu | 0.13–0.33 (0.20) | 0.19 ± 0.06 | 0.25 ± 0.02 | 0.14–0.48 (0.29) | 0.55–0.71 (0.64) | 0.34–2.50 (0.83) | 0.04–0.82 |
| Gd | 1.22–1.77 (1.40) | 1.06 ± 0.29 | 1.34 ± 0.04 | 0.73–2.28 (1.54) | 3.16–4.14 (3.70) | 2.27–27.53 (8.75) | 0.22–2.77 |
| Tb | 0.09–0.37 (0.19) | 0.16 ± 0.04 | 0.21 ± 0.01 | 0.13–0.41 (0.27) | 0.50–0.61 (0.56) | 0.28–1.75 (0.63) | 0.03–0.41 |
| Dy | 1.19–2.43 (1.67) | 1.20 ± 0.30 | 1.50 ± 0.02 | 1.00–2.82 (1.91) | 3.08–3.83 (3.46) | 2.01–11.14 (4.29) | 0.2–2.57 |
| Ho | 0.35–0.50 (0.44) | 0.32 ± 0.06 | 0.37 ± 0.01 | 0.25–0.68 (0.47) | 0.77–0.95 (0.86) | 0.57–2.66 (1.16) | 0.04–0.59 |
| Er | 1.06–1.59 (1.35) | 1.0 ± 0.20 | 1.18 ± 0.05 | 0.79–2.04 (1.46) | 2.26–2.79 (2.53) | 1.78–8.51 (3.73) | 0.11–0.38 |
| Tm | 0.17–0.28 (0.22) | 0.14 ± 0.03 | 0.17 ± 0.01 | - | - | 0.26–1.24 (0.55) | 0.02–0.16 |
| Yb | 0.93–1.58 (1.30) | 0.90 ± 0.2 | 1.07 ± 0.08 | 0.69–1.71 (1.24) | 2.15–2.64 (2.40) | 1.73–8.56 (3.84) | 0.11–1.14 |
| Lu | 0.17–0.31 (0.23) | 0.14 ± 0.03 | 0.19 ± 0.02 | 0.11–0.23 (0.16) | 0.37–0.45 (0.41) | 0.28–1.41 (0.64) | 0.02–0.17 |
| ∑REE | 17.58–45.89 (23.27) | 17.0 ± 5.0 | 18.93 ± 1.31 | 11.46–34.98 (21.24) | 48.42–62.23 (55.82) | 27.52–188.73 (66.15) | 3.50–116.92 |
| A Seawater | |||||||
|---|---|---|---|---|---|---|---|
| Site | HREE/ LREE | Ce/Ce* | Gd/Gd* | Gdant (ng L−1) | w(Gdant) (%) | Y/Y* | Y/Ho |
| 1 | 6.25 | 0.56 | 1.47 | 0.53 | 31.90 | 1.98 | 97.21 |
| 2 | 6.67 | 0.65 | 1.28 | 0.29 | 21.80 | 1.93 | 104.69 |
| 3 | 6.88 | 0.55 | 1.11 | 0.12 | 9.90 | 2.03 | 74.78 |
| 4 | 4.95 | 0.62 | 1.28 | 0.33 | 21.80 | 1.95 | 85.30 |
| 5 | 4.62 | 0.58 | 1.22 | 0.24 | 18.10 | 1.93 | 86.96 |
| 6 | 5.32 | 0.64 | 1.50 | 0.45 | 33.20 | 2.02 | 86.14 |
| 7 | 7.50 | 0.65 | 1.23 | 0.26 | 19.00 | 2.10 | 86.21 |
| 8 | 4.58 | 0.61 | 0.88 | - | - | 1.66 | 79.15 |
| 9 | 3.17 | 1.04 | 1.05 | 0.08 | 4.50 | 1.60 | 110.95 |
| 10 | 4.69 | 0.73 | 1.01 | 0.02 | 1.30 | 1.92 | 85.85 |
| B Sediment | |||||||
| Site | HREE/ LREE | Sm/Sm* | Eu/Eu* | Gd/Gd* | Y/Y* | Ho/Ho* | Y/Ho |
| S1 | 1.97 | 1.67 | 1.99 | 1.28 | 1.48 | 1.26 | 56.82 |
| S2 | 1.25 | 1.31 | 1.51 | 1.03 | 1.24 | 1.12 | 53.33 |
| S3 | 1.56 | 1.47 | 1.66 | 1.20 | 1.21 | 1.23 | 47.27 |
| S4 | 1.49 | 1.69 | 1.92 | 1.36 | 1.24 | 1.17 | 50.90 |
| S5 | 1.91 | 1.69 | 1.75 | 1.25 | 1.36 | 1.44 | 45.88 |
| S6 | 1.84 | 1.66 | 1.92 | 1.23 | 1.27 | 1.41 | 43.51 |
| S7 | 2.12 | 2.00 | 2.29 | 1.51 | 1.34 | 1.39 | 46.68 |
| S8 | 1.66 | 1.22 | 1.37 | 1.06 | 1.10 | 1.05 | 50.45 |
| S9 | 1.36 | 1.88 | 1.86 | 1.42 | 1.13 | 1.16 | 47.07 |
| S10 | 1.14 | 1.64 | 1.54 | 1.29 | 1.09 | 1.14 | 46.23 |
| S11 | 1.01 | 1.66 | 1.51 | 1.20 | 1.04 | 1.23 | 40.90 |
| Sediment | Soil | |||||||
|---|---|---|---|---|---|---|---|---|
| Pula Bay, Croatia * | Telašćica Bay, Croatia [29] | Zrmanja Estuary, Croatia [28] | Tagus Estuary, Portugal [2] | Odiel Estuary, SW Spain [78] | Oualidia lagoon, Morocco [79] | Mediterranean Sea, Egyptian Coast [80] | Terra rossa Istrian Peninsula, Croatia [77] | |
| Y | 23.8–39.7 (31.92) | 3.9–6.5 (5.91) | mean: 13.10 | 2.40–32.0 (14.1) | 7.4–26.0 (18.7) | 22.50 | - | - |
| La | 26.1–43.1 (33.69) | 11.3–16.6 (14.50) | 6.40–38.20 (21.30) | 3.70–42.0 (21.9) | 8.1–24.0 (16.8) | 22.85 | 11.60 ± 1.0 | 67.94 ± 25.94 |
| Ce | 48.5–88.2 (68.55) | 22.7–33.5 (28.90) | 10.3–80.30 (41.37) | 7.50–87.0 (45.0) | 17.0–49.0 (36.0) | 89.63 | 31.30 ± 4.0 | 137.60 ± 25.17 |
| Pr | 3.74–8.67 (5.81) | 2.7–4.2 (3.52) | 1.42–7.94 (4.70) | 0.90–11.0 (5.4) | 2.0–6.1 (4.58) | - | - | 15.36 ± 7.81 |
| Nd | 25.3–41.6 (32.45) | 10.8–16.4 (13.80) | 6.70–35.20 (20.45) | 3.60–43.0 (22.0) | 8.3–26.0 (19.7) | 11.74 | 11.90 ± 1.0 | 57.54 ± 30.35 |
| Sm | 6.39–12.2 (9.49) | 1.8–2.6 (2.38) | 1.23–6.05 (3.62) | 0.70–8.20 (4.4) | 1.70–6.90 (4.76) | 9.66 | 2.87 ± 0.22 | 11.35 ± 7.11 |
| Eu | 1.32–2.25 (1.81) | 0.4–0.6 (0.48) | 0.26–1.24 (0.73) | 0.12–1.40 (0.9) | 0.43–1.50 (1.05) | 4.58 | 0.99 ± 0.05 | 2.23 ± 1.49 |
| Gd | 4.55–8.32 (6.56) | 1.3–2.2 (1.88) | 1.05–4.86 (2.72) | 0.56–6.70 (3.7) | 1.70–6.4 (4.62) | 30.35 | - | 9.62 ± 5.31 |
| Tb | 0.550–0.828 (0.684) | 0.2–0.3 (0.26) | 0.17–0.77 (0.47) | 0.07–0.90 (0.5) | 0.23–0.93 (0.662) | 3.23 | 0.48 ± 0.04 | 1.42 ± 0.80 |
| Dy | 3.95–6.59 (4.93) | 0.7–1.3 (1.10) | 0.93–4.27 (2.41) | 0.40–4.70 (0.3) | 1.40–6.1 (4.10) | 1.41 | 3.60 ± 0.34 | 8.22 ± 4.03 |
| Ho | 0.901–1.68 (1.24) | 0.1–0.2 (0.18) | 0.19–0.76 (0.47) | 0.08–0.80 (0.5) | 0.26–1.10 (0.768) | - | - | 1.55 ± 0.69 |
| Er | 1.88–4.17 (2.60) | 0.3–0.6 (0.48) | 0.49–2.36 (1.31) | 0.23–2.50 (1.6) | 0.76–3.20 (2.25) | - | - | 4.59 ± 1.97 |
| Tm | 0.362–0.635 (0.514) | <0.1 | 0.06–0.36 (0.19) | 0.03–0.40 (0.2) | 0.10–0.44 (0.308) | - | - | 0.66 ± 0.25 |
| Yb | 2.19–4.15 (0.91) | 0.2–0.4 (0.32) | 0.41–2.16 (1.21) | 0.23–2.40 (1.5) | 0.71–3.0 (2.12) | 6.23 | 1.94 ± 0.29 | 4.28 ± 1.61 |
| Lu | 0.348–0.776 (0.556) | <0.1 | 0.06–0.98 (0.25) | 0.03–0.40 (0.2) | 0.10–0.43 (0.302) | - | - | 0.69 ± 0.27 |
| ∑REE | 134.76–218.22 (171.80) | 52.6–78.7 (67.9) | 29.7–181.0 (101.1) | 18.2–210.8 (110.8) | 43.0–135.0 (98.0) | - | - | 323.14 ± 109.34 |
| S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | Mean | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Igeo | ||||||||||||
| Y | 2.0 | 1.5 | 1.7 | 1.8 | 2.0 | 2.2 | 1.8 | 2.2 | 1.4 | 1.8 | 1.7 | 1.8 ± 0.2 |
| La | 0.3 | 0.3 | 0.6 | 0.5 | 0.6 | 0.9 | 0.3 | 0.7 | 0.6 | 1.0 | 0.9 | 0.6 ± 0.2 |
| Ce | 0.2 | 0.3 | 0.5 | 0.5 | 0.9 | 0.8 | 0.3 | 0.9 | 0.5 | 1.0 | 1.0 | 0.6 ± 0.3 |
| Pr | −0.4 | 0.3 | −0.2 | 0.2 | −0.1 | 0.0 | −0.5 | 0.4 | 0.0 | 0.7 | 0.7 | 0.1 ± 0.4 |
| Nd | 0.4 | 0.3 | 0.6 | 0.6 | 0.7 | 0.8 | 0.3 | 0.9 | 0.4 | 1.0 | 0.9 | 0.6 ± 0.2 |
| Sm | 1.2 | 0.8 | 1.2 | 1.4 | 1.5 | 1.6 | 1.4 | 1.3 | 1.3 | 1.8 | 1.7 | 1.4 ± 0.3 |
| Eu | 1.3 | 0.9 | 1.2 | 1.4 | 1.3 | 1.6 | 1.4 | 1.3 | 1.1 | 1.5 | 1.4 | 1.3 ± 0.2 |
| Gd | 1.0 | 0.7 | 1.1 | 1.3 | 1.2 | 1.4 | 1.2 | 1.3 | 1.1 | 1.6 | 1.4 | 1.2 ± 0.2 |
| Tb | 0.6 | 0.5 | 0.8 | 0.8 | 0.8 | 1.1 | 0.5 | 1.1 | 0.5 | 1.1 | 0.9 | 0.8 ± 0.2 |
| Dy | 1.4 | 1.4 | 1.5 | 1.5 | 1.5 | 1.8 | 1.3 | 2.0 | 1.3 | 1.8 | 1.7 | 1.6 ± 0.2 |
| Ho | 2.1 | 1.7 | 2.1 | 2.1 | 2.5 | 2.6 | 2.2 | 2.4 | 1.8 | 2.2 | 2.2 | 2.2 ± 0.3 |
| Er | 1.6 | 1.5 | 1.7 | 1.7 | 2.0 | 2.1 | 1.6 | 2.5 | 1.4 | 2.0 | 1.8 | 1.8 ± 0.3 |
| Tm | 1.7 | 1.3 | 1.6 | 1.8 | 1.9 | 2.0 | 2.0 | 2.1 | 1.6 | 1.8 | 1.5 | 1.8 ± 0.2 |
| Yb | 2.7 | 2.3 | 2.6 | 2.5 | 2.8 | 3.0 | 2.6 | 2.7 | 2.2 | 2.6 | 2.5 | 2.6 ± 0.2 |
| Lu | 2.0 | 1.2 | 1.8 | 1.7 | 2.3 | 2.3 | 1.9 | 2.4 | 1.4 | 1.8 | 1.6 | 1.8 ± 0.3 |
| PLI | 3.4 | 3.0 | 3.6 | 3.8 | 4.1 | 4.6 | 3.5 | 4.6 | 3.2 | 4.5 | 4.0 | 3.9 ± 0.5 |
| ER | ||||||||||||
| Y | 11.6 | 8.8 | 9.9 | 10.5 | 12.4 | 13.3 | 10.7 | 13.4 | 8.1 | 10.6 | 9.5 | 10.8 ± 1.7 |
| La | 1.8 | 1.8 | 2.2 | 2.1 | 2.2 | 2.8 | 1.9 | 2.5 | 2.2 | 3.0 | 2.8 | 2.3 ± 0.4 |
| Ce | 1.7 | 1.9 | 2.1 | 2.2 | 2.7 | 2.7 | 1.9 | 2.8 | 2.1 | 3.1 | 3.0 | 2.4 ± 0.5 |
| Pr | 5.6 | 9.0 | 6.4 | 8.7 | 7.0 | 7.3 | 5.3 | 9.9 | 7.4 | 11.8 | 12.3 | 8.3 ± 2.2 |
| Nd | 4.0 | 3.7 | 4.6 | 4.6 | 4.8 | 5.2 | 3.7 | 5.6 | 3.9 | 6.0 | 5.6 | 4.7 ± 0.8 |
| Sm | 17.2 | 13.4 | 17.5 | 20.2 | 20.8 | 22.9 | 19.4 | 18.4 | 18.9 | 25.6 | 25.0 | 19.9 ± 3.4 |
| Eu | 36.3 | 27.5 | 34.8 | 40.6 | 37.5 | 46.9 | 39.6 | 37.1 | 32.7 | 41.9 | 39.6 | 37.7 ± 4.8 |
| Gd | 15.1 | 12.1 | 16.0 | 18.6 | 17.1 | 19.3 | 17.2 | 19.0 | 16.0 | 22.1 | 19.6 | 17.5 ± 2.6 |
| Tb | 22.8 | 21.2 | 25.5 | 26.8 | 26.5 | 31.2 | 21.8 | 31.8 | 21.2 | 31.5 | 28.9 | 26.3 ± 4.0 |
| Dy | 20.1 | 19.2 | 21.7 | 21.4 | 21.8 | 26.0 | 19.1 | 30.0 | 18.0 | 25.3 | 24.0 | 22.4 ± 3.4 |
| Ho | 62.2 | 50.1 | 63.9 | 62.8 | 82.2 | 93.3 | 70.0 | 81.1 | 52.1 | 70.0 | 70.6 | 68.9 ± 12.3 |
| Er | 23.4 | 21.6 | 24.5 | 23.6 | 29.6 | 32.4 | 23.3 | 43.4 | 19.6 | 30.0 | 26.8 | 27.1 ± 6.3 |
| Tm | 48.7 | 36.2 | 45.7 | 52.7 | 57.2 | 61.5 | 59.2 | 63.5 | 45.9 | 51.5 | 43.1 | 51.4 ± 8.1 |
| Yb | 47.5 | 35.8 | 44.1 | 42.2 | 51.4 | 64.8 | 44.7 | 48.6 | 34.2 | 45.8 | 41.1 | 45.5 ± 7.8 |
| Lu | 116.8 | 69.6 | 105.2 | 97.8 | 145.2 | 147 | 112.0 | 155.2 | 81.6 | 104.0 | 88.2 | 111.2 ± 26 |
| PRI | 434.9 | 331.7 | 424.2 | 435 | 518.4 | 577 | 449.8 | 562.3 | 363.9 | 482.2 | 439.9 | 456 ± 71.8 |
| COLOUR CODE | ||||||||||||
| Pollution | No pollution | Mild | Moderate | Moderate to high | High | Very high | ||||||
| Ecological risk | No risk | Moderate | Moderate to high | High | Very high | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinek, S.; Grozdanić, O.; Cindrić, A.-M.; Finderle, I.; Omanović, D. Rare Earth Elements and Yttrium in Seawater and Sediments of Contaminated Pula Bay. J. Mar. Sci. Eng. 2025, 13, 2338. https://doi.org/10.3390/jmse13122338
Marcinek S, Grozdanić O, Cindrić A-M, Finderle I, Omanović D. Rare Earth Elements and Yttrium in Seawater and Sediments of Contaminated Pula Bay. Journal of Marine Science and Engineering. 2025; 13(12):2338. https://doi.org/10.3390/jmse13122338
Chicago/Turabian StyleMarcinek, Saša, Ozren Grozdanić, Ana-Marija Cindrić, Iva Finderle, and Dario Omanović. 2025. "Rare Earth Elements and Yttrium in Seawater and Sediments of Contaminated Pula Bay" Journal of Marine Science and Engineering 13, no. 12: 2338. https://doi.org/10.3390/jmse13122338
APA StyleMarcinek, S., Grozdanić, O., Cindrić, A.-M., Finderle, I., & Omanović, D. (2025). Rare Earth Elements and Yttrium in Seawater and Sediments of Contaminated Pula Bay. Journal of Marine Science and Engineering, 13(12), 2338. https://doi.org/10.3390/jmse13122338

