Abstract
The rapid expansion of global shipping has led to continuously increasing vessel traffic density, making high-accuracy ship trajectory prediction particularly critical for navigational safety and traffic management optimization in complex waters such as ports and narrow channels. However, existing methods still face challenges in medium-to-long-term prediction and nonlinear trajectory modeling, including insufficient accuracy and low computational efficiency. To address these issues, this paper proposes an enhanced Informer model (WOA-Informer) based on the Whale Optimization Algorithm (WOA). The model leverages Informer to capture long-term temporal dependencies and incorporates WOA for automated hyperparameter tuning, thereby improving prediction accuracy and robustness. Experimental results demonstrate that the WOA-Informer model achieves outstanding performance across three distinct trajectory patterns, with an average reduction of 23.1% in Root Mean Square Error (RMSE) and 27.8% in Haversine distance (HAV) compared to baseline models. The model also exhibits stronger robustness and stability in multi-step predictions while maintaining a favorable balance in computational efficiency. These results substantiate the effectiveness of metaheuristic optimization for strengthening deep learning architectures and present a computationally efficient, high-accuracy framework for vessel trajectory prediction.