Storm Surge Numerical Simulation of Typhoon “Mangkhut” with Adjoint Data Assimilation
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Numerical Adjoint Model
2.2.2. Model Construction
Wind Field Configuration
Numerical Experiment Configuration
3. Results
4. Discussion
5. Conclusions
- (1)
- The model successfully reconstructed the storm surge process induced by Typhoon “Mangkhut” in the South China Sea, demonstrating its capability and regional adaptability. Through continuous parameter optimization by the adjoint data assimilation method, the simulated water level errors under the E4 scheme were substantially reduced for all five wind fields. Compared to the E3 scheme, the Mean Absolute Error (MAE) decreased by 50% for EWF, 47% for the JWF, 48% for the JEWF, 26% for the HWF, and 42% for the HEWF. The overall error reduction indicates that the adjoint data assimilation method is also highly applicable in the South China Sea region, significantly improving the agreement between simulated results and measured data.
- (2)
- Among the constructed typhoon wind fields, the JWF performed noticeably better than the HWF. Among all schemes, JWF consistently exhibited lower MAE and RMSE values than HWF, along with higher R values. Moreover, the adjoint data assimilation method effectively reduced the errors in both the HWF and HEWF schemes, with particularly notable improvement in HEWF. This scheme achieved an MAE of 0.18 m, an RMSE of 0.26 m, and an R of 0.67. Nevertheless, both schemes still underperformed compared to the JWF and JEWF schemes in simulating Typhoon “Mangkhut” over the South China Sea.
- (3)
- To address the declining accuracy of the JWF with increasing distance from the typhoon center and the overall low intensity of the EWF, this study constructed a hybrid wind field, JEWF, by blending the JWF with the EWF. The results show that the JEWF achieved an MAE of 0.14 m, an RMSE of 0.19 m, and an R of 0.76, compared to the JWF, which yielded a MAE of 0.16 m, RMSE of 0.22 m, and R of 0.72. The JEWF exhibits lower errors and higher correlation than the JWF, demonstrating its better agreement with actual conditions. Moreover, the optimized CD derived from the JEWF is also more physically reasonable. This integration effectively overcomes the individual limitations of both wind fields.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Longitude/°E | Latitude/°N |
---|---|---|
BHI | 109.05 | 21.47 |
CWN | 113.88 | 22.45 |
DWS | 113.72 | 21.93 |
FCN | 108.33 | 21.60 |
GZH | 113.68 | 22.66 |
HAN | 110.13 | 20.23 |
NZU | 110.55 | 20.90 |
QLN | 110.82 | 19.56 |
QZH | 108.62 | 21.68 |
SHD | 111.07 | 21.48 |
STO | 116.76 | 23.22 |
SWI | 115.37 | 22.77 |
SYA | 109.50 | 18.25 |
WCG | 110.42 | 18.72 |
WZU | 109.12 | 21.02 |
XSA | 112.33 | 16.84 |
YWO | 117.10 | 23.40 |
ZLG | 115.57 | 22.65 |
ZPO | 111.82 | 21.58 |
References
- Saha, K.K.; Kumar, P.; Singh, A.; Kamranzad, B.; Young, I.R.; Rajni. Assessment and future projections of storm surge using CMIP6 models in the Indo-Pacific region. Ocean Model. 2025, 196, 102560. [Google Scholar] [CrossRef]
- Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts, J.C.J.H.; Ward, P.J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef]
- Losada, I.J.; Reguero, B.G.; Méndez, F.J.; Castanedo, S.; Abascal, A.J.; Mínguez, R. Long-term changes in sea-level components in Latin America and the Caribbean. Glob. Planet. Change 2013, 104, 34–50. [Google Scholar] [CrossRef]
- Yang, J.; Yan, F.; Chen, M. Effects of sea level rise on storm surges in the south Yellow Sea: A case study of Typhoon Muifa (2011). Cont. Shelf Res. 2021, 215, 104346. [Google Scholar] [CrossRef]
- Chou, J.; Dong, W.; Tu, G.; Xu, Y. Spatiotemporal distribution of landing tropical cyclones and disaster impact analysis in coastal China during 1990–2016. Phys. Chem. Earth Parts A/B/C 2020, 115, 102830. [Google Scholar] [CrossRef]
- Woo, W.C.; Wong, W.K. Operational Application of Optical Flow Techniques to Radar-Based Rainfall Nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef]
- Feng, J.L.; von Storch, H.; Jiang, W.S.; Weisse, R. Assessing changes in extreme sea levels along the coast of China. J. Geophys. Res. Ocean. 2015, 120, 8039–8051. [Google Scholar] [CrossRef]
- Yin, B.; Xu, Z.; Huang, Y.; Lin, X. Simulating a typhoon storm surge in the East Sea of China using a coupled model. Prog. Nat. Sci. 2009, 19, 65–71. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Yang, X.; Xu, W.; Wang, J.a. Mapping Global Mortality and Affected Population Risks for Multiple Natural Hazards. Int. J. Disaster Risk Sci. 2016, 7, 54–62. [Google Scholar] [CrossRef]
- Su, C.; Sahoo, B.; Mao, M.; Xia, M. Machine Learning Techniques for Predicting Typhoon-Induced Storm Surge Using a Hybrid Wind Field. J. Geophys. Res. Mach. Learn. Comput. 2025, 2, e2024JH000507. [Google Scholar] [CrossRef]
- Guan, S.; Li, S.; Hou, Y.; Hu, P.; Liu, Z.; Feng, J. Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 279–286. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. Recent migration of tropical cyclones toward coasts. Science 2021, 371, 514–517. [Google Scholar] [CrossRef]
- Guan, S.D.; Jin, F.F.; Tian, J.W.; Lin, I.-I.; Pun, I.F.; Zhao, W.; Huthnance, J.; Xu, Z.; Cai, W.J.; Jing, Z.; et al. Ocean internal tides suppress tropical cyclones in the South China Sea. Nat. Commun. 2024, 15, 3903. [Google Scholar] [CrossRef]
- Hu, J.; Pan, J.; Guo, X.; Zheng, Q. Introduction to the special section on regional environmental oceanography in the South China Sea and its adjacent areas (REO-SCS). J. Oceanogr. 2011, 67, 359–363. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.H. Progress on upwelling studies in the China seas. Rev. Geophys. 2016, 54, 653–673. [Google Scholar] [CrossRef]
- Wang, G.; Su, J.; Ding, Y.; Chen, D. Tropical cyclone genesis over the south China sea. J. Mar. Syst. 2007, 68, 318–326. [Google Scholar] [CrossRef]
- Jin, W.; Guan, S.; Chen, L.; Tang, Z.; Huang, M.; Xu, X.; Zhao, W. Joint risk analysis of typhoon hazards based on coupled ADCIRC-SWAN model simulations around Hainan, China. J. Sea Res. 2025, 205, 102587. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, T.; Jia, N.; Han, Z. Numerical study of the impacts of typhoon parameters on the storm surge based on Hato storm over the Pearl River Mouth, China. Reg. Stud. Mar. Sci. 2020, 34, 101061. [Google Scholar] [CrossRef]
- Lü, Z.; Wu, Z.; Jiang, C.; Zhang, H.; Gao, K.; Yan, R. Numerical investigation of the super typhoon Mangkhut based on the coupled air-sea model. J. Mar. Sci. 2023, 41, 21–31. [Google Scholar] [CrossRef]
- Fu, C.; Liu, Q.; Gao, Y.; Cao, H.; Liang, S. Numerical Simulation of Storm Surge Inundation in Estuarine Area Considering Multiple Influencing Factors. Sustainability 2024, 16, 2274. [Google Scholar] [CrossRef]
- Kerr, P.C.; Martyr, R.C.; Donahue, A.S.; Hope, M.E.; Westerink, J.J.; Luettich Jr, R.A.; Kennedy, A.B.; Dietrich, J.C.; Dawson, C.; Westerink, H.J. U.S. IOOS coastal and ocean modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico. J. Geophys. Res. Ocean. 2013, 118, 4633–4661. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, C.; Deng, B.; Cao, Y. Simulation of the storm surge in the South China Sea based on the coupled sea-air model. Chin. Sci. Bull. 2018, 63, 3494–3504. [Google Scholar] [CrossRef]
- Li, A.; Guan, S.; Mo, D.; Hou, Y.; Hong, X.; Liu, Z. Modeling wave effects on storm surge from different typhoon intensities and sizes in the South China Sea. Estuar. Coast. Shelf Sci. 2020, 235, 106551. [Google Scholar] [CrossRef]
- Hu, S.; Li, Y.; Hu, P.; Zhang, H.; Zhang, G.; Gong, W. The Impacts of Far-Field Typhoon-Generated Coastal Trapped Waves on the Hydrodynamics in the Northern South China Sea: A Case Study of Typhoon In-Fa. J. Geophys. Res. Ocean. 2024, 129, e2024JC021359. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Gao, X.; Pan, H.; Sun, J.; Xu, T.; Ren, P. An optimization method of adjoint assimilation based on the cumulative gradient: An application for correction of the bottom friction coefficient in the tidal wave model. Ocean Model. 2023, 183, 102202. [Google Scholar] [CrossRef]
- Stammer, D.; Balmaseda, M.; Heimbach, P.; Köhl, A.; Weaver, A. Ocean Data Assimilation in Support of Climate Applications. Annu. Rev. Mar. Sci. 2016, 8, 491–518. [Google Scholar] [CrossRef]
- Gao, X.; Wei, Z.; Lu, X.; Wang, Y.; Fang, G. Applications of Adjoint Data-assimilation Method to Ocean Numerical Simulation for China Adjacent Seas. Adv. Mar. Sci. 2010, 28, 545–553. [Google Scholar]
- Wu, X.; Xu, M.; Gao, G.; Yin, B.; Lv, X. Application of the Trigonometric Polynomial Interpolation for the Estimation of the Vertical Eddy Viscosity Coefficient Based on the Ekman Adjoint Assimilation Model. J. Mar. Sci. Eng. 2022, 10, 1165. [Google Scholar] [CrossRef]
- Li, Y.; Peng, S.; Yan, J.; Xie, L. On improving storm surge forecasting using an adjoint optimal technique. Ocean Model. 2013, 72, 185–197. [Google Scholar] [CrossRef]
- Gao, X.; Wei, Z.; Lv, X.; Wang, Y.; Fang, G. Numerical study of tidal dynamics in the South China Sea with adjoint method. Ocean Model. 2015, 92, 101–114. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, H.; Lv, X. Optimization of the Position of Observation Stations in the South China Sea with Adjoint Assimilation Method. Period. Ocean Univ. China 2018, 48, 13–23. [Google Scholar]
- Mo, D.X.; Li, J.; Hou, Y.J.; Hu, P. Modeling the Sea Level Response of the Northern East China Sea to Different Types of Extratropical Cyclones. J. Geophys. Res. Ocean. 2023, 128, e2022JC018728. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, Y.; Li, J.; Ding, X. Improvement of wind field hindcasts for tropical cyclones. Water Sci. Eng. 2016, 9, 58–66. [Google Scholar] [CrossRef]
- Kang, X.Y.; Xia, M. The Study of the Hurricane-Induced Storm Surge and Bay-Ocean Exchange Using a Nesting Model. Estuaries Coasts 2020, 43, 1610–1624. [Google Scholar] [CrossRef]
- Lockwood, J.W.; Lin, N.; Oppenheimer, M.; Lai, C.Y. Using Neural Networks to Predict Hurricane Storm Surge and to Assess the Sensitivity of Surge to Storm Characteristics. J. Geophys. Res. Atmos. 2022, 127, e2022JD037617. [Google Scholar] [CrossRef]
- Jelesnianski, C.P. A Numerical Calculation of Storm Tides Induced by a Tropical Storm Impinging on a Continental Shelf. Mon. Weather Rev. 1965, 93, 343–358. [Google Scholar] [CrossRef]
- Chen, K. A computation method fortyphoon wind field. Trop. Oceanol. 1994, 13, 41–48. (In Chinese) [Google Scholar]
- Holland, G.J. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Shao, Z.X.; Liang, B.C.; Li, H.J.; Wu, G.X.; Wu, Z.H. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea. Appl. Ocean Res. 2018, 71, 20–33. [Google Scholar] [CrossRef]
- Aarons, Z.S.; Camargo, S.J.; Strong, J.D.O.; Murakami, H. Tropical Cyclone Characteristics in the MERRA-2 Reanalysis and AMIP Simulations. Earth Space Sci. 2021, 8, e2020EA001415. [Google Scholar] [CrossRef]
- Hodges, K.; Cobb, A.; Vidale, P.L. How Well Are Tropical Cyclones Represented in Reanalysis Datasets? J. Clim. 2017, 30, 5243–5264. [Google Scholar] [CrossRef]
- Jiang, F.; Tian, Z.; Zhang, Y.; Udo, K. Risk map of typhoon induced wave fields around Hainan Island. Appl. Ocean Res. 2023, 137, 103603. [Google Scholar] [CrossRef]
- Jiao, L.Q.; Wang, Y.Q.; Jiang, D.; Liu, Q.R.; Gao, J.; Lv, X.Q. Numerical Simulation of Storm Surge-Induced Water Level Rise in the Bohai Sea with Adjoint Data Assimilation. Remote Sens. 2025, 17, 2054. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Zhong, R.; Han, B.; Wu, R. Impacts of wave feedbacks and planetary boundary layer parameterization schemes on air-sea coupled simulations: A case study for Typhoon Maria in 2018. Atmos. Res. 2022, 278, 106344. [Google Scholar] [CrossRef]
- Graham, H.E. Meteorological Considerations Pertinent to Standard Project Hurricane, Atlantic and Gulf Coasts of the United States; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1959.
- Willoughby, H.E.; Rahn, M.E. Parametric Representation of the Primary Hurricane Vortex. Part I: Observations and Evaluation of the Holland (1980) Model. Mon. Weather Rev. 2004, 132, 3033–3048. [Google Scholar] [CrossRef]
- Miyazaki, M.; Ueno, T.; Unoki, S. Theoretical investigations of typhoon surges along the Japanese coast. Oceanogr. Mag. 1962, 13, 103–117. [Google Scholar]
- Wang, Q.; Deng, J.; Liu, C.; Yan, J.; Ye, R.; Chen, X. Application of superimposed wind fields to the hindcast modelling of typhoon-induced waves in the South China Sea. Haiyang Xuebao 2017, 39, 70. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Y. Numerical estimation of the typhoon-induced wind and wave fields in Taiwan Strait. Ocean Eng. 2021, 239, 109803. [Google Scholar] [CrossRef]
- Roldán, M.; Montoya, R.D.; Rios, J.D.; Osorio, A.F. Modified parametric hurricane wind model to improve the asymmetry in the region of maximum winds. Ocean Eng. 2023, 280, 114508. [Google Scholar] [CrossRef]
- Smith, S.D. Wind Stress and Heat Flux over the Ocean in Gale Force Winds. J. Phys. Oceanogr. 1980, 10, 709–726. [Google Scholar] [CrossRef]
- Wu, J. Wind-Stress coefficients over Sea surface near Neutral Conditions—A Revisit. J. Phys. Oceanogr. 1980, 10, 727–740. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, F.; Fu, C.; Dong, J.; Liu, Q. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations. Appl. Ocean Res. 2022, 118, 103000. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, Y.; Xie, P.; Zhang, Y.; Li, Y. Tide-surge interactions in Northern South China Sea: A comparative study of Barijat and Mangkhut (2018). Front. Mar. Sci. 2024, 11, 1423294. [Google Scholar] [CrossRef]
- Chen, X.; Ni, Y.; Shen, Y.; Ying, Y.; Wang, J. The research on the applicability of different typhoon wind fields in the simulation of typhoon waves in China’s coastal waters. Front. Mar. Sci. 2024, 11, 1492521. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y. A parabolic model of drag coefficient for storm surge simulation in the South China Sea. Sci. Rep. 2015, 5, 15496. [Google Scholar] [CrossRef]
- Jarosz, E.; Mitchell, D.A.; Wang, D.W.; Teague, W.J. Bottom-Up Determination of Air-Sea Momentum Exchange Under a Major Tropical Cyclone. Science 2007, 315, 1707–1709. [Google Scholar] [CrossRef]
- Li, J.; Hou, Y.; Mo, D.; Liu, Q.; Zhang, Y. Influence of Tropical Cyclone Intensity and Size on Storm Surge in the Northern East China Sea. Remote Sens. 2019, 11, 3033. [Google Scholar] [CrossRef]
- Wei, C.; Bao, X.; Ding, Y.; Chen, B. Mechanism of Typhoon-Driven Storm Jet Driven by Typhoon Nesat in the Gulf of Beibu. Period. Ocean Univ. China 2022, 52, 28–39. [Google Scholar]
- Li, H.; Wei, K. Effect of wave–current–surge interactions on simulated wave conditions in a strait via an optimal WRF typhoon model. Ocean Eng. 2025, 326, 120962. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, W.; Qiu, X.; Feng, X.; Gong, W. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea. Cont. Shelf Res. 2017, 142, 32–49. [Google Scholar] [CrossRef]
- Wang, H.; Fu, D.; Liu, D.; Xiao, X.; He, X.; Liu, B. Analysis and Prediction of Significant Wave Height in the Beibu Gulf, South China Sea. J. Geophys. Res. Ocean. 2021, 126, e2020JC017144. [Google Scholar] [CrossRef]
- Zavala-Garay, J.; Rogowski, P.; Wilkin, J.; Terrill, E.; Shearman, R.K.; Tran, L.H. An Integral View of the Gulf of Tonkin Seasonal Dynamics. J. Geophys. Res. Ocean. 2022, 127, e2021JC018125. [Google Scholar] [CrossRef]
- Condon, A.J.; Sheng, Y.P. Optimal storm generation for evaluation of the storm surge inundation threat. Ocean Eng. 2012, 43, 13–22. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, J. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Cont. Shelf Res. 2006, 26, 1905–1923. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X. Parameter estimation for a three-dimensional numerical barotropic tidal model with adjoint method. Int. J. Numer. Methods Fluids 2008, 57, 47–92. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Wang, P.; Wang, Y.P. Study on linear and nonlinear bottom friction parameterizations for regional tidal models using data assimilation. Cont. Shelf Res. 2011, 31, 555–573. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, H.; Fan, W.; Lv, X. Application of Surface Spline Interpolation in Inversion of Bottom Friction Coefficients. J. Atmos. Ocean. Technol. 2017, 34, 2021–2028. [Google Scholar] [CrossRef]
- Liu, M.; Lv, X. Study on the Drag Coefficient in the Simulation of Storm Surges with Adjoint Method. Oceanol. Limnol. Sin. 2011, 42, 9–19, (In Chinese with English Abstract). [Google Scholar]
E1 | E2 | E3 | E4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | R | MAE | RMSE | R | MAE | RMSE | R | MAE | RMSE | R | |
EWF | 0.24 | 0.30 | 0.64 | 0.24 | 0.31 | 0.65 | 0.24 | 0.30 | 0.65 | 0.12 | 0.16 | 0.82 |
JWF | 0.31 | 0.37 | 0.61 | 0.29 | 0.35 | 0.62 | 0.30 | 0.36 | 0.61 | 0.16 | 0.22 | 0.72 |
JEWF | 0.27 | 0.34 | 0.60 | 0.27 | 0.34 | 0.59 | 0.27 | 0.34 | 0.58 | 0.14 | 0.19 | 0.76 |
HWF | 0.34 | 0.43 | 0.36 | 0.32 | 0.41 | 0.35 | 0.34 | 0.44 | 0.42 | 0.25 | 0.37 | 0.58 |
HEWF | 0.30 | 0.39 | 0.45 | 0.30 | 0.38 | 0.42 | 0.31 | 0.41 | 0.39 | 0.18 | 0.26 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, L.; Liu, C.; Jiang, D.; Zhang, X.; Lv, X. Storm Surge Numerical Simulation of Typhoon “Mangkhut” with Adjoint Data Assimilation. J. Mar. Sci. Eng. 2025, 13, 1992. https://doi.org/10.3390/jmse13101992
Jiao L, Liu C, Jiang D, Zhang X, Lv X. Storm Surge Numerical Simulation of Typhoon “Mangkhut” with Adjoint Data Assimilation. Journal of Marine Science and Engineering. 2025; 13(10):1992. https://doi.org/10.3390/jmse13101992
Chicago/Turabian StyleJiao, Liqun, Chuanfeng Liu, Dong Jiang, Xiaojiang Zhang, and Xianqing Lv. 2025. "Storm Surge Numerical Simulation of Typhoon “Mangkhut” with Adjoint Data Assimilation" Journal of Marine Science and Engineering 13, no. 10: 1992. https://doi.org/10.3390/jmse13101992
APA StyleJiao, L., Liu, C., Jiang, D., Zhang, X., & Lv, X. (2025). Storm Surge Numerical Simulation of Typhoon “Mangkhut” with Adjoint Data Assimilation. Journal of Marine Science and Engineering, 13(10), 1992. https://doi.org/10.3390/jmse13101992