Deformable USV and Lightweight ROV Collaboration for Underwater Object Detection in Complex Harbor Environments: From Acoustic Survey to Optical Verification
Abstract
1. Introduction
2. Materials and Methods
2.1. Unmanned Systems Platform
2.1.1. USV System
2.1.2. ROV Observation System
2.2. Survey Area and Deployment of Simulated Objects
2.3. Collaborative Detection and Disposal Methodology
2.3.1. Phase 1: USV Wide-Area Full-Coverage Acoustic Scanning
2.3.2. Phase 2: ROV Object Verification, Assessment, and Disposal
3. Results
3.1. USV Survey of Harbor Topography and Geomorphology
3.1.1. Accuracy Assessment of Multibeam Bathymetric Data
3.1.2. High-Precision 3D Topographic Features of the Harbor Basin
3.2. USV Detection of Underwater Objects in the Harbor
3.2.1. Acoustic Characteristics of Simulated Underwater Objects
3.2.2. Acoustic Characteristics of Other Underwater Objects in the Harbor
3.3. ROV Object Confirmation and Disposal
4. Discussion
4.1. Performance Evaluation of the USV-ROV System in a Harbor Environment
4.2. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alyami, H.; Lee, P.T.-W.; Yang, Z.; Riahi, R.; Bonsall, S.; Wang, J. An Advanced Risk Analysis Approach for Container Port Safety Evaluation. Marit. Policy Manag. 2014, 41, 634–650. [Google Scholar] [CrossRef]
- Pessanha Santos, N.; Moura, R.; Sampaio Torgal, G.; Lobo, V.; Neto, M.D.C. Side-Scan Sonar Imaging Data of Underwater Vehicles for Mine Detection. Data Brief 2024, 53, 110132. [Google Scholar] [CrossRef]
- Specht, C.; Śliwińska, D. Hydrographic Inspection Using a USV of a Harbour Bottom Deepened by the Periodic Actuation of SAR Vessel Propellers. Remote Sens. 2024, 16, 2522. [Google Scholar] [CrossRef]
- Howard, V.; Mefford, J.; Arnold, L.; Bingham, B.; Camilli, R. The Unmanned Port Security Vessel: An Autonomous Platform for Monitoring Ports and Harbors. In Proceedings of the OCEANS’11 MTS/IEEE KONA., Waikoloa, HI, USA, 19–22 September 2011; pp. 1–8. [Google Scholar]
- Radu, O.; Slămnoiu, G.; Zărnescu, L.; Coşereanu, L. Harbor Protection Against Terrorist Threats: Difficulties and Possible Solutions. In Proceedings of the RTO Systems Concepts and Integration Symposium, Ottawa, ON, Canada, 25–27 September 2006. [Google Scholar]
- Kitowski, Z. Selection of UUV Type ROV Equipment and Cooperation System with USV “Edredon” in Protection Tasks of Ports and Critical Objects. Trans. Marit. Sci. 2019, 8, 198–204. [Google Scholar] [CrossRef]
- Villa, J.; Aaltonen, J.; Virta, S.; Koskinen, K.T. A Co-Operative Autonomous Offshore System for Target Detection Using Multi-Sensor Technology. Remote Sens. 2020, 12, 4106. [Google Scholar] [CrossRef]
- Zhou, X.; Mizuno, K. Acoustic Camera-Based Super-Resolution Reconstruction Approach for Underwater Perception in Low-Visibility Marine Environments. Appl. Ocean Res. 2024, 150, 104110. [Google Scholar] [CrossRef]
- Jorge, V.A.M.; Granada, R.; Maidana, R.G.; Jurak, D.A.; Heck, G.; Negreiros, A.P.F.; Dos Santos, D.H.; Gonçalves, L.M.G.; Amory, A.M. A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions. Sensors 2019, 19, 702. [Google Scholar] [CrossRef]
- Du, X.; Sun, Y.; Song, Y.; Sun, H.; Yang, L. A Comparative Study of Different CNN Models and Transfer Learning Effect for Underwater Object Classification in Side-Scan Sonar Images. Remote Sens. 2023, 15, 593. [Google Scholar] [CrossRef]
- Dura, E. Image Processing Techniques for the Detection and Classification of Man Made Objects in Side-Scan Sonar Images. In Sonar Systems; Kolev, N., Ed.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-345-3. [Google Scholar]
- Georgiev, I. 3D Object Detection Using Sidescan Sonar Images. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2024. [Google Scholar]
- Lubis, M.Z.; Kausarian, H.; Anurogo, W. Seabed Detection Using Application of Image Side Scan Sonar Instrument (Acoustic Signal). J. Geosci. Eng. Environ. Technol. 2017, 2, 230. [Google Scholar] [CrossRef]
- Niu, H.; Li, X.; Zhang, Y.; Xu, J. Advances and Applications of Machine Learning in Underwater Acoustics. Intell. Mar. Technol. Syst. 2023, 1, 8. [Google Scholar] [CrossRef]
- Pailhas, Y.; Petillot, Y.; Capus, C. High-Resolution Sonars: What Resolution Do We Need for Target Recognition? EURASIP J. Adv. Signal Process. 2010, 2010, 205095. [Google Scholar] [CrossRef]
- Zhao, J.; Meng, J.; Zhang, H.; Yan, J. A New Method for Acquisition of High-Resolution Seabed Topography by Matching Seabed Classification Images. Remote Sens. 2017, 9, 1214. [Google Scholar] [CrossRef]
- Kim, Y.; Ryou, J. A Study of Sonar Image Stabilization of Unmanned Surface Vehicle Based on Motion Sensor for Inspection of Underwater Infrastructure. Remote Sens. 2020, 12, 3481. [Google Scholar] [CrossRef]
- Papatheodorou, G.; Kosmopoulou, A.; Fakiris, E.; Geraga, M.; Dimas, X.; Maurommatis, N.; Christodoulou, D.; Kouvara, K.; Xirotagarou, P. Benthic Megalitter Detection Using Unmanned Surface Vehicle (USV) and Automatic Target Detection: A Case Study in the Port of Thessaloniki, Thermaikos Gulf. In Proceedings of the 17th International Conference on Environmental Science and Technology, Athens, Greece, 1–4 September 2021. [Google Scholar]
- Li, Y. Application of UAV and USV in Joint Survey of the Submarine and Land Geomorphology in Dongluo Island, Hainan. Mar. Geol. Front. 2021, 37, 80–88. [Google Scholar] [CrossRef]
- Li, Y.; Shan, C.; Su, M.; Liu, W.; Lei, Y.; Wen, M.; Cai, P. Application of Acoustic Unmanned Surface Vehicle to Submarine Geomorphology Survey in Shallow Water. Mar. Geol. Quat. Geol. 2020, 40, 219–226. [Google Scholar] [CrossRef]
- Li, Y.; Yao, H.; Chen, Z.; Wang, L.; Zhou, H.; Zhang, S.; Zhao, B. Detailed Investigation of Cobalt-Rich Crusts in Complex Seamount Terrains Using the Haima ROV: Integrating Optical Imaging, Sampling, and Acoustic Methods. J. Mar. Sci. Eng. 2025, 13, 702. [Google Scholar] [CrossRef]
- Reed, S.; Wood, J.; Vazquez, J.; Mignotte, P.-Y.; Privat, B. A Smart ROV Solution for Ship Hull and Harbor Inspection. In Proceedings of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 5–9 April 2010; Carapezza, E.M., Ed.; SPIE: Bellingham, WA, USA, 2010; p. 76662G. [Google Scholar]
- Sun, B.; Pang, W.; Chen, M.; Zhu, D. Development and Experimental Verification of Search and Rescue ROV. Intell. Robot. 2022, 2, 355–370. [Google Scholar] [CrossRef]
- Nava-Balanzar, L.; Sanchez-Gaytán, J.L.; Fonseca-Navarro, F.; Salgado-Jiménez, T.; Garcia-Valdovinos, L.G.; Rubio-Lopez, O.; Gómez-Espinosa, A.; Ramirez-Martinez, A. Towards Teleoperation and Automatic Control Features of an Unmanned Surface Vessel-ROV System: Preliminary Results. In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, Madrid, Spain, 26–28 July 2017; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2017; pp. 292–299. [Google Scholar]
- Tran, C.; Gushkov, I.; Nordvik, K.; Røang, S.T.; Lysthaug, S.B.; Ommani, B.; Fossen, T.I.; Hassani, V.; Smines, V.; Johansen, T.A. Operability Analysis of Control System for ROV Launch-and-Recovery from Autonomous Surface Vessel. Ocean Eng. 2023, 277, 114272. [Google Scholar] [CrossRef]
- Tortorici, O.; Anthierens, C.; Hugel, V.; Barthelemy, H. Towards Active Self-Management of Umbilical Linking ROV and USV for Safer Submarine Missions. IFAC Pap. 2019, 52, 265–270. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Liu, Y.; Zhang, Y.; Hu, Y. Adaptive Terminal Sliding Mode Control for USV-ROVs Formation under Deceptive Attacks. Front. Mar. Sci. 2024, 11, 1320361. [Google Scholar] [CrossRef]
- Zhao, C.; Thies, P.R.; Johanning, L. Offshore Inspection Mission Modelling for an ASV/ROV System. Ocean Eng. 2022, 259, 111899. [Google Scholar] [CrossRef]
- EdgeTech. 6205 Bathymetry and Side Scan System User Hardware Manual; EdgeTech: West Wareham, MA, USA, 2017. [Google Scholar]
- SBG Systems. EKINOX 2 Surface Series Tactical Grade MEMS Inertial Sensors Hardware Manual; SBG Systems: Carrières-sur-Seine, France, 2018. [Google Scholar]
- Teledyne Marine. BlueView M900 Mk2 Product Leaflet; Teledyne Marine: Slangerup, Denmark, 2021. [Google Scholar]
- EdgeTech. Operation and Maintenance Manual for the Edgetech USBL Broadband Acoustic Tracking System (BATS); EdgeTech: West Wareham, MA, USA, 2012. [Google Scholar]
- DZ/T 0292-2016; Ministry of Land and Resources, PRC. Technical Regulations for Application of Marine Multibeam Bathymetric Survey (DZ/T 0292-2016). Guangzhou Marine Geological Survey, China Geological Survey: Beijing, China, 2016.
- Cheng, J.; Tian, M.; Liu, J.; Zhang, H.; Dong, C. Sonar Image Target Detection Based on YOLOX. J. Inf. Eng. Univ. 2023, 24, 385–390. [Google Scholar] [CrossRef]
- Mi, Y.; Chi, M.; Zhang, Q.; Liu, P. Research on Multi-Scale Fusion Image Enhancement and Improved YOLOv5s Lightweight ROV Underwater Target Detection Method. Sci. Rep. 2024, 14, 28280. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, J.; Gong, Q.; Huang, C.; Zheng, G.; Ma, J. Real-Time Underwater Maritime Object Detection in Side-Scan Sonar Images Based on Transformer-YOLOv5. Remote Sens. 2021, 13, 3555. [Google Scholar] [CrossRef]
- Pandian, P.K.; Ruscoe, J.P.; Shields, M.; Side, J.C.; Harris, R.E.; Kerr, S.A.; Bullen, C.R. Seabed Habitat Mapping Techniques: An Overview of the Performance of Various Systems. Mediterr. Mar. Sci. 2009, 10, 29. [Google Scholar] [CrossRef]
Category | Specifications |
---|---|
Hull |
|
Power and Propulsion |
|
Communication |
|
Control System |
|
Positioning |
|
Mission Payload |
|
Parameter Category | Specifications |
---|---|
Basic Parameters |
|
Power Input |
|
Observation System |
|
Sensors |
|
Deployment System |
|
Underwater Positioning |
|
FLS |
|
Altimeter |
|
Range of Depth Discrepancy | Number of Soundings | Percentage of Total Soundings |
---|---|---|
<0.01 m | 11,540 | 35.95% |
0.01 m~0.1 m | 16,885 | 52.60% |
0.1 m~0.15 m | 3677 | 11.45% |
Total | 32,102 | 100% |
Seabed Object Type | Acoustic Characteristics |
---|---|
Iron Drum | A strip-shaped, extremely strong echo with an indistinct acoustic shadow, indicating an elongated object lying flat; approximately 1 m long and 0.5 m wide, with a rope-like object attached. |
Plastic Drum | A point-shaped strong echo followed by a distinct acoustic shadow, indicating an upright object; approximately 1 m long and 0.5 m wide, with a visible rope-like object attached |
Rubber Tire | A circular shape of scattered weak echoes, forming a ring with a diameter of approximately 0.5 m |
Item | USV-ROV System | Conventional USV | Conventional ROV |
---|---|---|---|
Efficiency | USV detection: 6 h; ROV verification: 3 h. Total time: 9 h | Unable to verify underwater anomalies | Over 20 h; relatively low efficiency |
Accuracy in positioning and identification of underwater objects | Capable of identifying, locating, and verifying objects. SSS survey: positioning error 2.2 m. ROV verification: positioning error 3.2 m. | Able to detect anomalies but lacks ROV validation. Positioning accuracy depends solely on SSS survey. | Depends on its own underwater positioning system; positioning results cannot be cross-verified with SSS data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wen, M.; Wan, P.; Mu, Z.; Wu, D.; Chen, J.; Zhou, H.; Zhang, S.; Yao, H. Deformable USV and Lightweight ROV Collaboration for Underwater Object Detection in Complex Harbor Environments: From Acoustic Survey to Optical Verification. J. Mar. Sci. Eng. 2025, 13, 1862. https://doi.org/10.3390/jmse13101862
Li Y, Wen M, Wan P, Mu Z, Wu D, Chen J, Zhou H, Zhang S, Yao H. Deformable USV and Lightweight ROV Collaboration for Underwater Object Detection in Complex Harbor Environments: From Acoustic Survey to Optical Verification. Journal of Marine Science and Engineering. 2025; 13(10):1862. https://doi.org/10.3390/jmse13101862
Chicago/Turabian StyleLi, Yonghang, Mingming Wen, Peng Wan, Zelin Mu, Dongqiang Wu, Jiale Chen, Haoyi Zhou, Shi Zhang, and Huiqiang Yao. 2025. "Deformable USV and Lightweight ROV Collaboration for Underwater Object Detection in Complex Harbor Environments: From Acoustic Survey to Optical Verification" Journal of Marine Science and Engineering 13, no. 10: 1862. https://doi.org/10.3390/jmse13101862
APA StyleLi, Y., Wen, M., Wan, P., Mu, Z., Wu, D., Chen, J., Zhou, H., Zhang, S., & Yao, H. (2025). Deformable USV and Lightweight ROV Collaboration for Underwater Object Detection in Complex Harbor Environments: From Acoustic Survey to Optical Verification. Journal of Marine Science and Engineering, 13(10), 1862. https://doi.org/10.3390/jmse13101862