Identification of Suitable Mangrove Distribution Areas and Estimation of Carbon Stocks for Mangrove Protection and Restoration Action Plan in China
Abstract
:1. Introduction
2. The Study Area
3. Materials and Methods
3.1. Mangrove Area in China before the Action Plan (2019)
3.2. Mangrove Restoration and Afforestation Targets
3.3. Environment Variable
3.4. Geographical Zoning and Carbon Density Parameters Statistics
3.5. Application of the MaxEnt Model
3.6. Analysis of Mangrove Habitat Suitability
3.7. Prediction of Carbon Stock Change
4. Results
4.1. The Model Accuracy
4.2. Performance of Environmental Factors
4.3. Response of Environmental Factors to the Suitability of Mangrove Habitats
4.4. Spatial Distribution of Mangrove Habitat Suitability in China
4.5. Prediction of Carbon Stock Change in Mangrove Forests in China
5. Discussion
5.1. Accuracy of MaxEnt Model Predictions
5.2. Estimation of the Difficulty and Effectiveness of the Action Plan
5.3. Accuracy of Carbon Stock Estimation
5.4. Outlook for Future Mangrove Protection and Restoration
6. Conclusions
- (1)
- Elevation was the most important factor affecting the overall distribution of mangrove forests in China, and the optimal elevation of mangrove distribution was 0.52 m, which should be considered in the protection and restoration of mangrove forests.
- (2)
- Hainan, Guangxi, and Guangdong had large areas of suitable habitat for mangrove forests, which had a high potential for carbon sinks. Danzhou Bay and Hongpai Harbor in Hainan, Lianzhou Bay in Guangxi, and the Huangmao Sea in Guangdong were potential habitat suitability areas not yet strongly protected.
- (3)
- Before the action plan, the carbon stock of China’s mangrove forests was 5.17 Tg C. After the action plan, the carbon stock would be increased by 4.13 Tg C, and the total carbon stock would reach 9.30 Tg C. Other suitable areas not included in this plan could still increase carbon stocks by 7.99 Tg C in the long term.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNESCO. UN Sets Sail towards Better Protection of Biodiversity in World’s Largest Ecosystem; UNESCO: Paris, France, 2013. [Google Scholar]
- Carugati, L.; Gatto, B.; Rastelli, E.; Martire, M.L.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Kelleway, J.J.; Saintilan, N.; Macreadie, P.I.; Skilbeck, C.G.; Zawadzki, A.; Ralph, P.J. Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Glob. Chang. Biol. 2016, 22, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Lugo, A.E.; Tomlinson, P.B. The Botany of Mangroves. Ecology 1987, 68, 238. [Google Scholar] [CrossRef]
- Sérgio, C.; Figueira, R.; Draper, D.; Menezes, R.; Sousa, A.J. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biol. Conserv. 2006, 135, 341–351. [Google Scholar] [CrossRef]
- Ashraf, U.; Peterson, A.T.; Chaudhry, M.N.; Ashref, I.; Saqib, Z.; Ahmad, S.R.; Ali, H. Ecological niche model comparison under different climate scenarios: A case study of Olea spp. in Asia. Ecosphere 2017, 8, e01825. [Google Scholar] [CrossRef]
- Sundblad, G.; Haermae, M.; Lappalainen, A.; Urho, L.; Bergström, U. Transferability of predictive fish distribution models in two coastal systems. Estuar. Coast. Shelf Sci. 2009, 83, 90–96. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Liu, G.L.; Chen, Y.H.; Yu, N.J. Potential Distribution of Seagrass Meadows Based on the MaxEnt Model in Chinese Coastal Waters. J. Ocean. Univ. China 2022, 21, 1351–1361. [Google Scholar] [CrossRef]
- Turner, I.M.; Gong, W.K.; Ong, J.E.; Bujang, J.S.; Kohyanma, T. The architecture and allometry of mangrove saplings. Funct. Ecol. 1995, 9, 205–212. [Google Scholar] [CrossRef]
- Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 2005, 21, 471–477. [Google Scholar] [CrossRef]
- Jia, M.M. Remote Sensing Analysis of China’s Mangrove Forests Dynamics during 1973 to 2013; University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology): Changchun, China, 2014. [Google Scholar]
- Dai, Z.J.; Li, C.C. Dynamic Geomorphologic Processes along the Arc Coast of South China; East China Normal University Press: Shanghai, China, 2008; Volume 9. [Google Scholar]
- Zheng, J.Y.; Bian, J.J.; Ge, Q.S.; Yin, Y.H. The climate regionalization in China for 1951–1980 and 1981–2010. Geogr. Res. 2013, 32, 987–997. [Google Scholar]
- Zhang, R.T.; Lin, P. Studies on the Flora of Mangrove-Plants from the Coast of China. J. Xiamen Univ. (Nat. Sci.) 1984, 2, 232–239. [Google Scholar]
- Liao, B.W.; Zhang, Q.M. Area, distribution and species composition of mangroves in China. Wetl. Sci. 2014, 12, 435–440. [Google Scholar]
- Zhao, C.P.; Qin, C.Z. 10-m-resolution mangrove maps of China derived from multi-source and multi-temporal satellite observations. ISPRS J. Photogramm. Remote Sens. 2020, 169, 389–405. [Google Scholar] [CrossRef]
- Duke, N.; Ball, M.; Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 1998, 7, 27–47. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Sitoe, A.A.; Mandlate, L.J.C.; Guedes, B.S. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests. Forests 2014, 5, 1967–1981. [Google Scholar] [CrossRef]
- Xin, K.; Yan, K.; Li, Z.; Hu, J.L.; Qiu, M.H.; Hu, J.L. Distribution of soil organic carbon in mangrove wetlands of Hainan island and its influencing factors. Acta Pedol. Sin. 2014, 51, 1078–1086. [Google Scholar]
- Jiang, X.F. The Biomass and Soil Carbon Stocks and Their Influencing Factors of Mangrove Forests in China. Master’s Thesis, Xiamen University, Xiamen, China, 2020. [Google Scholar]
- Meng, Y.C.; Bai, J.K.; Gou, R.K.; Cui, X.W.; Feng, J.X.; Dai, Z.; Diao, X.P.; Zhu, X.S.; Lin, G.H. Relationships between above-and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon. Carbon Balance Manag. 2021, 16, 8. [Google Scholar] [CrossRef]
- Wang, B.X. Investigation on Community Structure and Carbon Storage of Mangrove Ecosystem in Sanya River. Master’s Thesis, Hainan Tropical Ocean University, Hainan, China, 2022. [Google Scholar]
- Shi, X.; Nie, T.Z.; Xiong, Q.; Liu, Z.X.; Zang, J.Y.; Liu, W.J.; Wu, L.; Cui, W.; Sun, Z.Y. Assessment of carbon stock and sequestration of the mangrove ecosystems on Hainan Island based on InVEST and MaxEnt models. J. Trop. Biol. 2023, 14, 298–306. [Google Scholar]
- Zhang, S.F. Study on Different Mangrove Community Soil Environmental Organic Carbon of Vertical Distribution in Dongzhai Harbor, Hainan. Master’s Thesis, Hainan University, Hainan, China, 2019. [Google Scholar]
- Yan, K. Carbon Storage and Evaluation of Mangrove Wetlands in Dongzhaigang, Hainan. Ph.D. Thesis, Hainan Normal University, Hainan, China, 2015. [Google Scholar]
- Xin, K.; Yan, K.; Gao, C.; Li, Z. Carbon storage and its influencing factors in Hainan Dongzhangang mangrove wetlands. Mar. Freshw. Res. 2018, 69, 771–779. [Google Scholar] [CrossRef]
- Wang, G.; Guan, D.S.; Xiao, L.; Peart, M.R. Ecosystem carbon storage affected by intertidal locations and climatic factors in three estuarine mangrove forests of South China. Reg. Environ. Chang. 2019, 19, 1701–1712. [Google Scholar] [CrossRef]
- Mo, L.P.; Zhou, H.J.; Liu, Y.D.; Li, Q.Y.; Liang, X.H. An Estimation of Soil Organic Carbon Storage in Mangrove Wetlands of Guangxi. J. Anhui Agric. Sci. 2015, 43, 81–84. [Google Scholar]
- He, Q.F.; Zheng, W.; Huang, X.R.; Liu, X.; Shen, W.H.; He, F. Carbon storage and distribution of mangroves at Qinzhou bay. J. Cent. South Univ. For. Technol. 2017, 37, 121–126. [Google Scholar]
- Tao, Y.H.; Huang, X.; Wang, X.P.; Zhong, Q.P. Soil carbon and nitrogen storages in three mangrove stands of Zhenzhu Gulf, Guangxi. Guihaia 2020, 40, 285–292. [Google Scholar]
- Tao, Y.H.; Huang, X.; Wang, X.P.; Zhong, Q.P.; Kang, Z.J. Spatial distribution of soil carbon and nitrogen stocks in Mangrove Wetland of Xiandao Park and Shajing in Guangxi. Prog. Fish. Sci. 2020, 41, 38–45. [Google Scholar]
- Li, C.; Zhao, R.B.; Wang, F.; Wang, F.C.; Hu, Y.Z.; Yang, P.; Zhao, Y.L. Current situation of the coastal wetlands in Guangxi and analysis of carbon storage in the mangrove wetland. North China Geol. 2022, 45, 29–35. [Google Scholar]
- Wu, B.; Zhang, W.Z.; Tian, Y.C.; Liang, M.Z.; Xu, J.; Gu, G.H. Characteristics and Carbon Storage of a Typical Mangrove Island Ecosystem in Beibu Gulf, South China Sea. J. Resour. Ecol. 2022, 13, 458–465. [Google Scholar]
- Wang, G.; Guan, D.S.; Peart, M.R.; Chen, Y.J.; Peng, Y.S. Ecosystem Carbon Stocks of Mangrove Forest in Yingluo Bay, Guangdong Province of South China. For. Ecol. Manag. 2013, 310, 539–546. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Zhao, F.; Guo, J.L.; Wu, G.J.; Lin, G.X. Below-ground organic carbon distribution and burial characteristics of the Gaoqiao mangrove area in Zhanjiang, Guangdong, Southern China. Acta Ecol. Sin. 2016, 36, 7841–7849. [Google Scholar]
- Gao, Y. Studies on Distribution Patterns of and Controlling Factors for Soil Carbon Pools of Selected Mangrove Wetlands in China. Ph.D. Thesis, Tsinghua University, Beijing, China, 2019. [Google Scholar]
- Hu, Y.K.; Xu, Y.W.; Xue, C.Q.; Luo, Y.; Liao, B.W.; Zhu, N.H. Studies on carbon storages of Sonneratia apetala forest vegetation and soil in Guangdong Province. J. South China Agric. Univ. 2019, 40, 95–103. [Google Scholar]
- Qin, G.M.; Zhang, J.F.; Zhou, J.G.; Lu, Z.; Wang, F.M. Soil Carbon Stock and Potential Carbon Storage in the Mangrove Forests of Guangdong. Trop. Geogr. 2023, 43, 23–30. [Google Scholar]
- Mao, Z.L.; Lai, M.D.; Zhao, Z.Y.; Yang, X.M. Effect of invasion plants (Mikania micrantha H.B.K.) on carbon stock of mangrove ecosystem in Shenzhen bay. Ecol. Environ. Sci. 2011, 20, 1813–1818. [Google Scholar]
- Lunstrum, A.; Chen, L.Z. Soil Carbon Stocks and Accumulation in Young Mangrove Forests. Soil Biol. Biochem. 2014, 75, 223–233. [Google Scholar] [CrossRef]
- Fu, C.C.; Li, Y.; Zeng, L.; Zhang, H.B.; Tu, C.; Zhou, Q.; Xiong, K.X.; Wu, J.P.; Duarte, C.M.; Christie, P.; et al. Stocks and Losses of Soil Organic Carbon from Chinese Vegetated Coastal Habitats. Glob. Chang. Biol. 2020, 27, 202–214. [Google Scholar] [CrossRef]
- Hu, Y.K.; Zhu, N.H.; Liao, B.W.; You, Y.L.; Tang, H. Carbon density and carbon fixation rate of mangroves of different restoration types in Qi’ao island. J. Cent. South Univ. For. Technol. 2019, 39, 101–107. [Google Scholar]
- Yu, C.X.; Feng, J.X.; Liu, K.; Wang, G.; Zhu, Y.H.; Chen, H.; Guan, D.S. Changes of Ecosystem Carbon Stock Following the Plantation of Exotic Mangrove Sonneratia apetala in Qi’ao Island, China. Sci. Total Environ. 2020, 717, 137–142. [Google Scholar] [CrossRef]
- Xu, F. Mangrove Extraction and Carbon Storage Estimation by Using Sentinel-2 Images. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2020. [Google Scholar]
- Lin, J.S. Studies on Biomass of Kandelia candel Community in Pingtan Coast of Fujian Province. Prot. For. Sci. Technol. 2005, 2, 6–8. [Google Scholar]
- Li, X.J. Study on Ecological Characteristic of Natural Kandelia Candel and the Comparision of Hight-Yield Forest of Esatern Fujian Province. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2010. [Google Scholar]
- Wang, R.; Li, X.J.; Cai, J.B.; Zhang, D.Q.; He, D.J.; Liu, C.; Wang, Q.B.; Zheng, K.J.; Lin, F. Comparative Study on Biomass of the Natural Kandelia candel Forest and Its Plantatio in the Coastal Area of East fujian Province. J. Southwest For. Univ. (Nat. Sci.) 2010, 30, 16–20. [Google Scholar]
- Yan, J.Y.; He, D.J.; Li, X.J.; Wang, R.; Cai, J.B.; You, W.B.; Su, S.C.; Zheng, Z.R.; Xiao, S.H. Comparative Studies on the Carbon Storage between the Kandelia candel Natural Forests and Plantations in North Mangrove Forests of China. Chin. J. Trop. Crops 2013, 34, 1395–1401. [Google Scholar]
- Jin, C.; Wang, J.W.; Zheng, J.; Chen, Q.X.; Li, J.Q.; Lu, X. An assessment method of Kandelia obovata population biomass. Acta Ecol. Sin. 2012, 32, 3414–3422. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Baldwin, R.A. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Chao, B.X.; Hu, W.J.; Chen, B.; Zhang, D.; Chen, G.C.; Yu, W.W.; Ma, Z.Y.; Lei, G.C.; Wang, Y.Y. Potential suitable habitat of mangroves and conservation gap analysis in Guangdong Province with MaxEnt Modeling. Chin. J. Ecol. 2020, 39, 3785–3794. [Google Scholar]
- Carvalho, B.M.; Rangel, E.F.; Ready, P.D.; Vale, M.M. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change. PLoS ONE 2015, 10, e0143282. [Google Scholar] [CrossRef]
- Liu, H.X.; Ren, H.; Hui, D.F.; Wang, W.Q.; Liao, B.W.; Cao, Q.X. Carbon stocks and potential carbon storage in the mangrove forests of China. J. Environ. Manag. 2014, 133, 86–93. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; Griffith, K.T.; Cavanaugh, K.C.; Enwright, N.M.; Day, R.H.; Stagg, C.L.; Krauss, K.W.; Howard, R.J.; Grace, J.B. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 2017, 87, 341–359. [Google Scholar] [CrossRef]
- Tan, H.R.; Guan, D.S.; Wang, G. Effects of air temperature, rainfall and socio-economic activities on mangrove forest distribution in Techeng Island of Zhangjiang. Mar. Environ. Sci. 2023, 42, 558–565. [Google Scholar]
- Chen, L.Z.; Chen, L.Z.; Lin, P. Influence of waterlogging time on the growth of Kandelia candel seedling. Haiyang Xuebao 2005, 2, 141–147. [Google Scholar]
- Peng, Y.S.; Zhuang, X.Y.; Zhao, L.L.; Wang, Z.H.; Gao, J.C.; Wang, B.X.; He, Z.Y. Influence of species choice and tidal flat elevation on the carbon sequestration of early mangrove restoration. Acta Sci. Nat. Univ. Sunyatseni 2023, 62, 37–46. [Google Scholar]
- Chen, L.Z.; Yang, Z.W.; Wang, W.Q.; Lin, P. Critical tidal level for planting Kandelia candel seedlings in Xiamen. Chin. J. Appl. Ecol. 2006, 17, 177–181. [Google Scholar]
- He, B.Y.; Lai, T.H.; Wang, W.Q.; Chen, J.F.; Qiu, G.L. Growth and Physiological Response of Kandelia candel L. Druce Seedlings to Gradients of Waterlogging Stress in the Diurnal Sea Area. Mar. Sci. Bull. 2007, 26, 42–49. [Google Scholar]
- Liu, L.; Fan, H.Q.; Li, C.G. Tide elevations for four mangrove species along western coast of Guangxi, China. Acta Ecol. Sin. 2012, 32, 690–698. [Google Scholar]
District | Restoration Area (ha) | Afforestation Area (ha) |
---|---|---|
Guangdong | 2500 | 5500 |
Guangxi | 3500 | 1000 |
Hainan | 3200 | 2000 |
Fujian | 550 | 350 |
Zhejiang | 0 | 200 |
Total | 9750 | 9050 |
Data Type | Variable | Interpretation | Unit | Data Source |
---|---|---|---|---|
Bioclimate | Bio 2 | Mean Diurnal Range | °C | Global climate and weather data (https://www.worldclim.org/, accessed on 27 April 2023) |
Bio 3 | Isothermality | °C | ||
Bio 5 | Max Temperature of Warmest Month | °C | ||
Bio 7 | Temperature Annual Range | °C | ||
Bio 8 | Mean Temperature of Wettest Quarter | °C | ||
Bio 12 | Annual Precipitation | mm | ||
Bio 16 | Precipitation of Wettest Quarter | mm | ||
Bio 17 | Precipitation of Driest Quarter | mm | ||
Bio 19 | Precipitation of Coldest Quarter | mm | ||
Terrain | TWI | Topographic Wetness Index | - | Gridded Bathymetry Data (https://www.gebco.net, accessed on 11 May 2023) |
Elevation | Sea floor elevation | m | ||
Substrate type | Substrate | Substrate type | - | National Maine Data Center (http://mds.nmdis.org.cn/, accessed on 2 June 2023) |
Sea surface salinity | Max_SSS | Maximum sea surface salinity | - | Bio-ORACLE Marine data layers for ecological modelling (https://www.bio-oracle.org/, accessed on 17 May 2023) |
Min_SSS | Minimum sea surface salinity | - | ||
Sea surface temperature | Max_SST | Maximum sea surface temperature | °C | Bio-ORACLE Marine data layers for ecological modelling (https://www.bio-oracle.org/, accessed on 17 May 2023) |
District | Included Cities | AGBC (t/ha) | BGBC (t/ha) | SC (t/ha) | Reference |
---|---|---|---|---|---|
Southern Hainan (S_HN) | Ledong, Sanya, Lingshui | 53.2 | 21.5 | 149.23 | [24,25,26,27,28] |
Western Hainan (W_HN) | Danzhou, Changjiang, Dongfang | 47.91 | 15.94 | 216.84 | [24,25,26,27,28] |
Eastern Hainan (E_HN) | Qionghai, Wanning | 41.4 | 18.63 | 127.84 | [28] |
Northern Hainan (N_HN) | Lingao, Chengmai, Haikou, Wenchang | 47.91 | 22.06 | 167.01 | [24,25,26,28,29,30,31,32] |
Southern Guangxi (S_GX) | Fangchenggang, Qinzhou, Beihai | 38.12 | 13.7 | 138.5 | [33,34,35,36,37,38] |
Western Guangdong (W_GD) | Zhanjiang, Maoming, Yangjiang | 42.72 | 15.82 | 163.37 | [25,26,39,40,41,42,43] |
Central Guangdong (C_GD) | Jiangmen, Zhuhai, Zhongshan, Guangzhou, Dongguan, Shenzhen, Huizhou | 47.72 | 15.35 | 155.67 | [25,43,44,45,46,47,48] |
Eastern Guangdong (E_GD) | Shanwei, Jieyang, Shantou, Chaozhou | 55.14 | 15.49 | 185 | [42,43] |
Southern Fujian (S_FJ) | Zhangzhou, Xiamen, Quanzhou | 36.26 | 18.17 | 105.27 | [25,26,32,41,49] |
Central Fujian (C_FJ) | Putian, Fuzhou | 5.7 | 2.97 | 129.68 | [25,30] |
Eastern Fujian (E_FJ) | Ningde | 11.91 | 7.43 | 135.05 | [25,50,51,52,53] |
Southern Zhejiang (S_ZJ) | Wenzhou, Taizhou | 2.13 | 1.56 | 115.06 | [25,54] |
Variable | Interpretation | Contribution (%) | Imporance (%) |
---|---|---|---|
Elevation | Sea floor elevation | 46.2 | 66.2 |
Bio 19 | Precipitation of Coldest Quarter | 7.7 | 10.3 |
Bio 5 | Max Temperature of Warmest Month | 5.9 | 8.1 |
Bio 7 | Temperature Annual Range | 1.7 | 4.9 |
Bio 16 | Precipitation of Wettest Quarter | 14.6 | 1.9 |
Bio 12 | Annual Precipitation | 1 | 1.8 |
Substrate | Substrate type | 8.3 | 1.8 |
Bio 8 | Mean Temperature of Wettest Quarter | 3.3 | 1.6 |
Bio 3 | Isothermality | 2.3 | 1.1 |
Bio 2 | Mean Diurnal Range | 0.1 | 0.7 |
Min_SSS | Minimum sea surface salinity | 0.6 | 0.6 |
Max_SST | Maximum sea surface temperature | 3.1 | 0.5 |
Max_SSS | Maximum sea surface salinity | 0.5 | 0.3 |
TWI | Topographic Wetness Index | 4.4 | 0.3 |
Bio 17 | Precipitation of Driest Quarter | 0.3 | 0 |
Variable | Interpretation | Unit | Threshold Range | Optimal Value |
---|---|---|---|---|
Elevation | Sea floor elevation | m | −1.73~4.30 | 0.52 |
Bio 19 | Precipitation of Coldest Quarter | mm | 6.44~172.34 | 6.44 |
Bio 5 | Max Temperature of Warmest Month | °C | 30.54~33.65 | 33.65 |
Bio 7 | Temperature Annual Range | °C | 11.29~27.55 | 18.77 |
Bio 16 | Precipitation of Wettest Quarter | mm | 376.63~1765.75 | 460.72 |
Bio 12 | Annual Precipitation | mm | 749.28~2882.55 | 2707.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, B.; Tao, Y.; Xie, X.; Qin, Y.; Hu, B.; Jia, R.; Pan, L.; Liu, W.; Jiang, W. Identification of Suitable Mangrove Distribution Areas and Estimation of Carbon Stocks for Mangrove Protection and Restoration Action Plan in China. J. Mar. Sci. Eng. 2024, 12, 445. https://doi.org/10.3390/jmse12030445
Feng B, Tao Y, Xie X, Qin Y, Hu B, Jia R, Pan L, Liu W, Jiang W. Identification of Suitable Mangrove Distribution Areas and Estimation of Carbon Stocks for Mangrove Protection and Restoration Action Plan in China. Journal of Marine Science and Engineering. 2024; 12(3):445. https://doi.org/10.3390/jmse12030445
Chicago/Turabian StyleFeng, Bingbin, Yancheng Tao, Xiansheng Xie, Yingying Qin, Baoqing Hu, Renming Jia, Lianghao Pan, Wenai Liu, and Weiguo Jiang. 2024. "Identification of Suitable Mangrove Distribution Areas and Estimation of Carbon Stocks for Mangrove Protection and Restoration Action Plan in China" Journal of Marine Science and Engineering 12, no. 3: 445. https://doi.org/10.3390/jmse12030445
APA StyleFeng, B., Tao, Y., Xie, X., Qin, Y., Hu, B., Jia, R., Pan, L., Liu, W., & Jiang, W. (2024). Identification of Suitable Mangrove Distribution Areas and Estimation of Carbon Stocks for Mangrove Protection and Restoration Action Plan in China. Journal of Marine Science and Engineering, 12(3), 445. https://doi.org/10.3390/jmse12030445