Physicochemical Drivers of Zooplankton Seasonal Variability in a West African Lagoon (Nokoué Lagoon, Benin)
Abstract
:1. Introduction
- To inventory the zooplanktonic fauna of Nokoué Lagoon,
- To describe the spatio-temporal variations of zooplankton on a seasonal scale, in terms of diversity and abundance,
- To determine the main physicochemical drivers of the zooplankton community and to verify if salinity is the determining parameter.
2. Materials and Methods
2.1. Study Area and Annual Hydrological Cycle
2.2. Station Location and Sampling Strategy
2.3. Environmental Parameters
2.4. Zooplankton Collection and Sample Analysis
2.5. Data Interpolation and Statistics
3. Results
3.1. Seasonal Variations of Environmental Parameters
3.2. General Distribution of the Zooplankton Community
3.3. Seasonal Variation of the Zooplankton Community
3.4. Relationship between Rotifer and Copepod Diversity and Environmental Factors
3.5. Relationship between Rotifer and Copepod Abundance and Environmental Factors
3.6. Relationship between Abundance of the Most Frequent Taxa and Environmental Factors
4. Discussion
4.1. Zooplankton Composition and Diversity
4.2. Zooplankton Abundance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lalèyè, P.; Villanueva, M.; Entsua-Mensah, C.M.; Moreau, J. A review of the aquatic living resources in Gulf of Guinea lagoons with particular emphasis on fisheries management. J. Afrotropical Zool. 2007, 10, 123–136. [Google Scholar]
- Gnohossou, P. La Faune Benthique d’une Lagune Ouest Africaine (le Lac Nokoue au Benin), Diversite, Abondance, Variations Temporelles et Spatiales, Place dans la Chaine Trophique. PhD Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2006; p. 169. [Google Scholar]
- Djihouessi, M.B.; Aina, M.P. A review of hydrodynamics and water quality of Lake Nokoué: Current state of knowledge and prospects for further research. Reg. Stud. Mar. Sci. 2018, 18, 57–67. [Google Scholar] [CrossRef]
- Mama, D.; Aina, M.; Alassane, A.; Boukari, O.; Chouti, W.; Deluchat, V.; Bowen, J.; Afouda, A.; Baudu, M. Caractérisation physico-chimique et évaluation du risque d’eutrophisation du lac Nokoué (Bénin). Int. J. Biol. Chem. Sci. 2011, 5, 20–76. [Google Scholar] [CrossRef] [Green Version]
- Okpeitcha, V.; Chaigneau, A.; Morel, Y.; Stieglitz, T.; Pomalegni, Y.; Sohou, Z.; Mama, D. Seasonal and interannual variability of salinity in a large West-African lagoon (Nokoué Lagoon, Benin). Estuar. Coast. Shelf Sci. 2021, 264, 107689. [Google Scholar] [CrossRef]
- Odountan, O.; de Bisthoven, L.J.; Koudenoukpo, C.; Abou, Y. Spatio-temporal variation of environmental variables and aquatic macroinvertebrate assemblages in Lake Nokoué, a RAMSAR site of Benin. Afr. J. Aquat. Sci. 2019, 44, 219–231. [Google Scholar] [CrossRef]
- Agadjihouede, H.; Akele, D.G.; Gougbedji, A.U.M.; Laleye, P.A. Exploitation de l’huître des mangroves Crassostrea Gasar (Adanson, 1757) dans le lac Nokoué au Bénin. Eur. Sci. J. 2017, 13, 352. [Google Scholar] [CrossRef] [Green Version]
- Lalèyè, P.; Niyonkuru, C.; Moreau, J.; Teugels, G. Spatial and seasonal distribution of the ichthyofauna of Lake Nokoué, Bénin, west Africa. Afr. J. Aquat. Sci. 2003, 28, 151–161. [Google Scholar] [CrossRef]
- Marcarelli, A.M.; Wurtsbaugh, W.A.; Griset, O. Salinity controls phytoplankton response to nutrient enrichment in the Great Salt Lake, Utah, USA. Can. J. Fish. Aquat. Sci. 2006, 63, 2236–2248. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, H.Y.; Radwan, A.A.; Said, M.A. Influence of salinity variations on zooplankton community in El-Mex Bay, Alexandria, Egypt. Egypt. J. Aquat. Res. 2017, 33, 52–67. [Google Scholar]
- Nkwoji, J.A.; Onyema, I.C.; Igbo, J.K. Wet season spatial occurrence of phytoplankton and zooplankton in Lagos Lagoon, Nigeria. Sci. World J. 2010, 5, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Paturej, E.; Gutkowska, A. The effect of salinity levels on the structure of zooplankton communities. Arch. Biol. Sci. 2015, 67, 483–492. [Google Scholar] [CrossRef]
- Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 2004, 60, 245–262. [Google Scholar] [CrossRef]
- Bonnet, D.; Frid, C. Seven copepod species considered as indicators of water-mass influence and changes: Results from a Northumberland coastal station. ICES J. Mar. Sci. 2004, 61, 485–491. [Google Scholar] [CrossRef]
- Giamali, C.; Kontakiotis, G.; Antonarakou, A.; Koskeridou, E. Ecological Constraints of Plankton Bio-Indicators for Water Column Stratification and Productivity: A Case Study of the Holocene North Aegean Sedimentary Record. J. Mar. Sci. Eng. 2021, 9, 1249. [Google Scholar] [CrossRef]
- Bērziņš, B.; Pejler, B. Rotifer occurrence in relation to pH. Hydrobiologia 1987, 147, 107–116. [Google Scholar] [CrossRef]
- Kuczynski, D. The rotifer fauna of Argentine Patagonia as a potential limnological indicator. Hydrobiologia 1987, 150, 3–10. [Google Scholar] [CrossRef]
- Branco, C.W.; de Assis Esteves, F.; Kozlowsky-Suzuki, B. The zooplankton and other limnological features of a humic coastal lagoon (Lagoa Comprida, Mace, RJ) in Brazil. Hydrobiologia 2000, 437, 71–81. [Google Scholar] [CrossRef]
- Branco, C.W.; Kozlowsky-Suzuki, B.; Esteves, F.A. Environmental changes and zooplankton temporal and spatial variation in a disturbed Brazilian coastal lagoon. Braz. J. Biol. 2007, 67, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Adandedjan, D.; Makponse, E.; Hinvi, L.C.; Laleye, P. Données préliminaires sur la diversité du zooplancton du lac Nokoué (Sud-Bénin). J. Appl. Biosci. 2017, 115, 11476–11489. [Google Scholar] [CrossRef]
- Le Barbé, L.; Alé, G.; Millet, B.; Texier, H.; Borel, Y.; Gualde, R. Les Ressources en Eaux Superficielles de la République du Bénin; Monographies hydrologiques; ORSTOM: Paris, France, 1993; Volume 11, 540p. [Google Scholar]
- Mama, D.; Chouti, W.; Alassane, A.; Changotade, O.; Alapini, F.; Boukari, M. Etude dynamique des apports en éléments majeurs et nutritifs des eaux de la lagune de Porto-Novo (Sud Bénin). Int. J. Biol. Chem. Sci. 2011, 5, 1278–1293. [Google Scholar] [CrossRef]
- Chaigneau, A.; Okpeitcha, V.O.; Morel, Y.; Stieglitz, T.; Assogba, A.; Benoist, M.; Allamel, P.; Honfo, J.; Awoulbang Sakpak, T.D.; Rétif, F.; et al. From seasonal flood pulse to seiche: Multi-frequency water-level fluctuations in a large shallow tropical lagoon (Nokoué Lagoon, Benin). Estuar. Coast. Shelf Sci. 2022, 267, 107767. [Google Scholar] [CrossRef]
- Texier, H.; Colleuil, B.; Profizi, J.-P.; Dossou, C. Lake Nokoue, lagoonal environment of South-Benin costal margin: Bathymetry, sedimentary facies, salinites, molluscus and vegetation. Bull. Inst. Géol. Bassin D’aquitaine 1980, 28, 115–142. [Google Scholar]
- Texier, H.; Dossou, C.; Colleuil, B. Étude de l’environnement lagunaire du domaine margino-littoral sud-béninois. Étude hydrologique préliminaire du lac Nokoué. Bull. L’institut Géologie Du Bassin D’aquitaine 1979, 25, 149–166. [Google Scholar]
- Wetzel, R.A.; Likens, G.E. Limnological Analyses; Springer: New York, NY, USA, 1991; Volume 391, pp. 15–166. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- Ahlström, E.H. A revision of the Rotatorian genera Brachionus an Platyias with descriptions new species and two new varieties. Bull. Am. Mus. Nat. Hist. 1940, 77, 148–184. [Google Scholar]
- Durand, J.R.; Leveque, C. Flore et Faune Aquatiques de l’Afrique Sahélo-Soudanienne: Tome 1; ORSTOM: Paris, France, 1980. [Google Scholar]
- Dussart, B.H. Les Copépodes. In Flore et Faune Aquatiques de l’Afrique Sahélo Soudanienne: Tome 1; ORSTOM: Paris, France, 1980; pp. 333–356. [Google Scholar]
- Conway, D.V.P. Marine zooplankton of southern Britain. Part 1: Radiolaria, Heliozoa, Foraminifera, Ciliophora, Cnidaria, Ctenophora, Platyhelminthes, Nemertea, Rotifera and Mollusca. Mar. Biol. Assoc. U. K. 2012, 25, 138. [Google Scholar]
- Conway, D.V.P. Marine zooplankton of southern Britain. Part 2: Arachnida, Pycnogonida, Cladocera, Facetotecta, Cirripedia and Copepoda. Mar. Biol. Assoc. U. K. 2012, 26, 163. [Google Scholar]
- Conway, D.V.P. Marine zooplankton of southern Britain. Part 3: Ostracoda, Stomatopoda, Nebaliacea, Mysida, Amphipoda, Isopoda, Cumacea, Euphausiacea, Decapoda, Annelida, Tardigrada, Nematoda, Phoronida, Bryozoa, Entoprocta, Brachiopoda, Echinodermata, Chaetognatha, Hemichordata and Chordata. Mar. Biol. Assoc. U. K. 2015, 27, 271. [Google Scholar]
- Conway, D.V.P.; White, R.G.; Hugues-Dit-Ciles, J.; Gallienne, C.P.; Robins, D.B. Guide to the coastal and surface zooplankton of the south-western Indian Ocean. Mar. Biol. Assoc. U. K. 2003, 15, 354. [Google Scholar]
- Carling, K.; Ater, I.; Pellam, M.; Bouchard, A.; Mihuc, T. A Guide to the Zooplankton of Lake Champlain; Plattsburgh State University of New York: Plattsburgh, NY, USA, 2004; Volume 1, pp. 38–66. [Google Scholar]
- Fontaneto, D.; De Smet, W.H.; Melone, G. Identification key to the genera of marine rotifers worldwide. Meiofauna Mar. 2008, 16, 75–99. [Google Scholar]
- Yamani, F.Y.; Skryabin, V.; Gubanova, A.; Khvorov, S.; Prusova, I. Marine Zooplankton: Practical Guide for the Northwestern Arabian Gulf; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2011; p. 12. [Google Scholar]
- Haney, J.F.; Aliberti, M.A.; Allan, E.; Allard, S.; Bauers, D.J.; Beagen, W.S.; Bradtr, R.; Carlson, B.; Carlson, S.C.; Doan, U.M.; et al. An-Image-Based Key to the Zooplankton of North America; Version 5.0; University of New Hampshire Center for Freshwater Biology: Durham, NH, USA, 2013. [Google Scholar]
- LaMay, M.; Hayes-Pontius, E.; Ater, I.M.; Mihuc, T.B. A revised key to the zooplankton of Lake Champlain. Sci. Discipulorum 2013, 6, 141. [Google Scholar]
- Ezz, S.M.A.; Aziz, A.N.E.; Abou Zaid, M.M.; El Raey, M.; Abo-Taleb, H.A. Environmental assessment of El-Mex Bay, Southeastern Mediterranean by using Rotifera as a plankton bio-indicator. Egypt. J. Aquat. Res. 2014, 40, 43–57. [Google Scholar]
- Swadling, K.; Slotwinski, A.; Davies, C.; Beard, J.; McKinnon, A.D.; Coman, F.; Murphy, N.; Tonks, M.; Rochester, W.; Conway, D.V.P.; et al. Australian Marine Zooplankton: A Taxonomic Guide and Atlas. In Image Key-Zooplankton; The University of Tasmania: Hobart, Australia, 2013; Available online: https://www.imas.utas.edu.au/zooplankton/image-key (accessed on 1 February 2023).
- Glime, J.M. Arthropods: Crustacea—Copepoda and Cladocera. Chapter 10–1. Bryophyt. Ecol. 2017, 2, 10–120. [Google Scholar]
- Glime, J.M. Invertebrates: Rotifer Taxa—Monogononta Chapter 4–7 a-b-c. Bryophyt. Ecol. 2017, 2, 7–37. [Google Scholar]
- Santhanam, P.; Perumal, P.; Begum, A. A Method of Collection, Preservation and Identification of Marine Zooplankton. In Basic and Applied Zooplankton Biology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–44. [Google Scholar]
- Wilke, T.; Ahlrichs, W.H.; Bininda-Emonds, O.R.P. A weighted taxonomic matrix key for species of the rotifer genus Synchaeta (Rotifera, Monogononta, Synchaetidae). ZooKeys 2019, 871, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: http://rotifera.hausdernatur.at/ (accessed on 1 February 2023).
- Available online: https://www.shetlandlochs.com/species/eukaryota/animalia/rotifera/eurotatoria/ploima/asplanchnidae/asplanchna (accessed on 1 February 2023).
- Shannon, C.E.; Weaver, W.W. The Mathematical Theory of Communications; University of Illinois Press: Urbana, IL, USA, 1963; 117p. [Google Scholar]
- Peet, R.K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Grall, J.; Coïc, N. Synthèse des méthodes d’évaluation de la qualité du benthos en milieu côtier. Rapp. IFREMER 2005, 91, 2711826. [Google Scholar]
- Bretherton, F.; Davis, R.; Fandry, C. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr. 1976, 23, 559–582. [Google Scholar] [CrossRef]
- McIntosh, P. Oceanographic data interpolation: Objective analysis and splines. J. Geophys. Res. 1990, 95, 13529–13541. [Google Scholar] [CrossRef]
- Wong, A.P.S.; Johnson, G.C.; Owens, W.B. Delayed-mode calibration of autonomous CTD profiling float salinity data by y–S climatology. J. Atmos. Ocean. Technol. 2003, 20, 308–318. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherland, 1998; 853p. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Ter Braak, C.J.; Prentice, I.C. A theory of gradient analysis. Adv. Ecol. Res. 1988, 18, 271–317. [Google Scholar]
- Hastie, T.J. Generalized Additive Models. In Statistical Models in S.; Routledge: New-York, USA, 2017; pp. 249–307. [Google Scholar]
- Ter Braak, C.J.; Smilauer, P. CANOCO Reference Manual and Canodraw for Windows User’s Guide: Softare for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Wood, S. Generalized Additive Models: An Introduction with R.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006; 422p. [Google Scholar]
- Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation; University of Bath: Bath, UK, 2012. [Google Scholar]
- Badsi, H.; Ali, H.O.; Loudiki, M.; Hafa, M.E.; Chakli, R.; Aamiri, A. Ecological factors affecting the distribution of zooplankton community in the Massa Lagoon (Southern Morocco). Afr. J. Environ. Sci. Technol. 2010, 4, 751–762. [Google Scholar]
- Okogwu, I.O. Seasonal variations of species composition and abundance of zooplankton in Ehoma Lake, a floodplain lake in Nigeria. Rev. Biol. Trop. 2010, 58, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appiah, Y.S.; Étilé, R.N.; Kouamé, K.A.; Paul, E. Zooplankton diversity and its relationships with environmental variables in a West African tropical coastal lagoon (Ebrié lagoon, Côte d’Ivoire, West Africa). J. Biodivers. Environ. Sci. 2018, 13, 1–16. [Google Scholar]
- Étilé, R.N.; Aka, M.N.; Blahoua, G.K.; Kouamélan, P.E. Zooplankton diversity and distribution in a Fresco Lagoon (West Africa, Côte d’Ivoire). Int. Res. J. Environ. Sci. 2018, 7, 9–20. [Google Scholar]
- Monney, I.A.; Etile, R.N.; Ouattara, I.N.; Kone, T. Seasonal distribution of zooplankton in the Aby-Tendo-Ehy lagoons system (Côte d’Ivoire, West Africa). Int. J. Biol. Chem. Sci. 2016, 9, 23–62. [Google Scholar] [CrossRef] [Green Version]
- Morel, Y.; Chaigneau, A.; Okpeitcha, V.O.; Stieglitz, T.; Assogba, A.; Duhaut, T.; Rétif, F.; Peugeot, C.; Sohou, Z. Terrestrial or oceanic forcing? Water level variations in coastal lagoons constrained by river inflow and ocean tides. Adv. Water Resour. 2022, 169, 104309. [Google Scholar] [CrossRef]
- Houssou, A.; Montchowui, E.; Bonou, C. Composition and structure of zooplankton community in ouémé river basin, republic of Benin. J. Entomol. Zool. Stud. 2017, 10, 336–344. [Google Scholar]
- Adjahouinou, D.C.; Liady, N.D.; Fiogbe, E.D. Diversité phytoplanctonique et niveau de pollution des eaux du collecteur de Dantokpa (Cotonou-Bénin). Int. J. Biol. Chem. Sci. 2012, 6, 1938–1949. [Google Scholar] [CrossRef]
- Sukumaran, P.K.; Das, A.K. Distribution and abundance of rrotifera in relation to the water quality of selected tropical reservoirs. Indian J. Fish. 2004, 51, 295–301. [Google Scholar]
- Özbay, H.; Altindağ, A. Zooplankton abundance in the River Kars, Northeast Turkey: Impact of environmental variables. Afr. J. Biotechnol. 2009, 8, 5814–5818. [Google Scholar]
- Onana, F.M.; Zébazé Togouet, S.H.; Nyamsi, T.; Domche, T.; Ngassam, P. Distribution spatio-temporelle du zooplancton en relation avec les facteurs abiotiques dans un hydrosystème urbain: Le ruisseau de Kondi, Cameroun. J. Appl. Biosci. 2014, 82, 7326–7338. [Google Scholar] [CrossRef] [Green Version]
- Zannatul, F.; Muktadir, A.K.M. A Review: Potentiality of Zooplankton as Bioindicator. Am. J. Appl. Sci. 2009, 10, 1815–1819. [Google Scholar]
- Koudenoukpo, C.Z.; Chikou, A.; Zebaze, S.H.T.; Mvondo, N.; Hazoume, R.U.; Houndonougbo, P.K.; Laleye, P.A. Zooplanctons et Macroinvertébrés aquatiques: Vers un assemblage de bioindicateurs pour un meilleur monitoring des écosystèmes aquatiques en région tropicale. Int. J. Innov. Appl. Stud. 2017, 20, 276. [Google Scholar]
- Segers, H. Global diversity of rotifère (Phylum Rotifera) in freshwater. Hydrobiologia 2008, 595, 49–59. [Google Scholar] [CrossRef]
- Sarma, S.S.S.; Nandini, S.; Morales-Ventura, J.; Delgado-Martínez, I.; González-Valverde, L. Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquat. Ecol. 2006, 40, 349–360. [Google Scholar] [CrossRef]
- Epp, R.W.; Winston, P.W. Osmotic regulation in the brackish-water rotifer Brachionus plicatilis (MULLER). J. Exp. Biol. 1977, 68, 151–156. [Google Scholar] [CrossRef]
- Lowe, C.D.; Kemp, S.J.; Díaz-Avalos, C.; Montagnes, D.J.S. How does salinity tolerance influence the distributions of Brachionus plicatilis sibling species? Mar. Biol. 2007, 150, 377–386. [Google Scholar] [CrossRef]
- Walker, K.F. A synopsis of ecological information on the saline lake rotifer Brachionus plicatilis Muller 1786. Hydrobiologia 1981, 81, 159–167. [Google Scholar] [CrossRef]
- Miracle, R.M.; Serra, M.; Oltra, R.; Vicente, E. Differencial distribution of Brachionus species in the coastal lagoons. Verh. Internat. Verein. Limnol. 1988, 25, 2006–2015. [Google Scholar]
- Arcifa, M.S.; Castilho, M.S.M.; Carmouze, J.-P. Composition et évolution du zooplancton dans une lagune tropicale (Brésil) au cours d’une période marquée par une mortalité de poissons. Hydrobiol. Trop. 1994, 27, 251–263. [Google Scholar]
- Remane, A. Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft. Greifswald 1934, 36, 34–74. [Google Scholar]
- Khlebovich, V.V.; Abramova, E.N. Some problems of crustacean taxonomy related to the phenomenon of horohalinicum. Hydrobiologia 2000, 417, 109–113. [Google Scholar] [CrossRef]
- Telesh, I.V.; Schubert, H.; Skarlato, S.O. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern. Estuar. Coast. Shelf Sci. 2013, 135, 317–327. [Google Scholar] [CrossRef]
- Boesch, D.F.; Diaz, R.J.; Virnstein, R.W. Effets de la tempête tropicale Agnes sur les communautés macrobenthiques à fond meuble des estuaires James et York et de la partie inférieure de la baie de Chesapeake. Chesap. Sci. 1976, 17, 246–259. [Google Scholar] [CrossRef]
- Attrill, M.J. Un modèle linéaire testable pour les tendances de la diversité dans les estuaires. J. D’écologie Anim. 2002, 71, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Telesh, I.V.; Schubert, H.; Skarlato, S.O. Revisiting Remane’s concept: Evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Mar. Ecol. Prog. Ser. 2011, 421, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, A.K.; Elliott, M.; Basset, A.; Blaber, S.J.M.; West, R.J. Paradigms in estuarine ecology—A review of the Remane diagram with a suggested revised model for estuaries. Estuar. Coast. Shelf Sci. 2012, 97, 78–90. [Google Scholar] [CrossRef]
- Laprise, R.; Dodson, J.J. Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Mar. Ecol.-Prog. Ser. 1994, 107, 67. [Google Scholar] [CrossRef]
- Crump, B.C.; Armbrust, E.V.; Baross, J.A. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 1999, 65, 3192–3204. [Google Scholar] [CrossRef] [Green Version]
- Dolan, J.R.; Gallegos, C.L. Estuarine diversity of tintinnids (planktonic ciliates). J. Plankton Res. 2001, 23, 1009–1027. [Google Scholar] [CrossRef] [Green Version]
- Hewson, I.; Fuhrman, J.A. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl. Environ. Microbiol. 2004, 70, 3425–3433. [Google Scholar] [CrossRef] [Green Version]
- Telesh, I.V. Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: A review of present knowledge and research perspectives. Mar. Pollut. Bull. 2004, 49, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Duggan, S.; McKinnon, A.D.; Carleton, J.H. Zooplankton in an Australian tropical estuary. Estuaries Coasts 2008, 31, 455–467. [Google Scholar] [CrossRef]
- Welcomme, R.L. An evaluation of acadja method of fishing as practiced in the coastal lagoons of Dahomey (West africa). J. Fish Bid. 1972, 4, 39–55. [Google Scholar] [CrossRef]
- Chaffra, A.S.; Agbon, A.C.; Tchibozo, E.A.M. Cartographie par télédétection des Acadjas, une technique de pêche illicite sur le lac Nokoué au Bénin. Sci. Tech. 2020, 5, 11–29. [Google Scholar]
- Welcomme, R.L.; Kapetsky, I.C. Acadjas: The Brush Park Fisheries of Benin, West Africa. ICLARM Newsl. 1981, 4, 3–4. [Google Scholar]
- Guiral, D.; Gourbault, N.; Helleouet, M.-N. Étude sédimentologique et méiobenthos d’un écosystème lagunaire modifié par un récif artificiel à vocation aquacole: L’acadja. Oceanol. Acta 1995, 18, 543–555. [Google Scholar]
- Visser, A.W.; Stips, A. Turbulence and zooplankton production: Insights from PROVESS. J. Sea Res. 2002, 47, 317–329. [Google Scholar] [CrossRef]
- Guiral, D.; Arfi, R.; Da, K.P.; Konan-Brou, A.A. Communautés, biomasses et productions algales au sein d’un récif artificiel (acaja) en milieu lagunaire tropical. Rev. Hydrobiol. Trop. 1993, 26, 219–228. [Google Scholar]
Group | Family | Taxa | Relative Abundance (%) | Frequency of Occurrence Focc (%) | Code |
---|---|---|---|---|---|
Rotifera | Asplanchnidae | Asplanchna girodi de Guerne, 1888 | 1.55 | 15.63 | |
Asplanchna priodonta Gosse, 1850 | 0.00 | 1.04 | |||
Asplanchna sp. 1 | 0.32 | 6.25 | |||
Asplanchna sp. 2 | 0.07 | 8.33 | |||
Asplanchna sp. 3 | 0.01 | 2.08 | |||
Asplanchna sp. 4 | 0.06 | 2.08 | |||
Brachionidae | Anuraeopsis navicula Rousselet, 1911 | 0.00 | 2.08 | ||
Anuraeopsis fissa Gosse, 1851 | 0.00 | 1.04 | |||
Anuraeopsis sp. | 0.00 | 1.04 | |||
Brachionus angularis Gosse, 1851 | 2.83 | 37.50 | R03 | ||
Brachionus bidentatus Anderson, 1889 | 0.28 | 15.63 | |||
Brachionus calyciflorus Pallas, 1766 | 0.54 | 23.96 | |||
Brachionus caudatus Barrois & Daday, 1894 | 1.63 | 30.21 | R08 | ||
Brachionus falcatus Zacharias, 1898 | 0.73 | 32.29 | R06 | ||
Brachionus mirabilis Daday, 1897 | 0.01 | 5.21 | |||
Brachionus plicatilis Müller, 1786 | 7.25 | 57.29 | R01 | ||
Brachionus quadridentatus Hermann, 1783 | 0.00 | 3.13 | |||
Epiphanes macroura (Barrois & Daday, 1894) | 0.022 | 7.29 | |||
Epiphanes sp. | 0.03 | 8.33 | |||
Keratella cochlearis (Gosse, 1851) | 0.09 | 9.38 | |||
Keratella lenzi Hauer, 1953 | 0.35 | 15.63 | |||
Keratella sp. | 0.51 | 12.50 | |||
Keratella tropica (Apstein, 1907) | 0.94 | 34.38 | R05 | ||
Plationus patulus (Müller, 1786) | 0.06 | 18.75 | |||
Platyias quadricornis (Ehrenberg, 1832) | 0.06 | 10.42 | |||
Trichotria sp. | 0.00 | 2.08 | |||
Conochilidae | Conochilus sp. | 0.05 | 10.42 | ||
Euchlanidae | Euchlanis triquetra Ehrenberg, 1838 | 0.17 | 8.33 | ||
Lecanidae | Lecane bulla (Gosse, 1851) | 0.27 | 25.00 | ||
Lecane crepida Harring, 1914 | 0.02 | 3.13 | |||
Lecane leontina (Turner, 1892) | 1.46 | 26.04 | R10 | ||
Lecane ludwigii (Eckstein, 1883) | 0.01 | 6.25 | |||
Lecane quadridentata (Ehrenberg, 1830) | 0.08 | 6.25 | |||
Lecane sp. | 0.06 | 15.63 | |||
Lecane closterocerca (Schmarda, 1859) | 0.06 | 14.58 | |||
Lecane stenroosi (Meissner, 1908) | 0.07 | 4.17 | |||
Lepadellidae | Colurella adriatica Ehrenberg, 1831 | 0.09 | 11.46 | ||
Colurella hindenburgi Steinecke, 1916 | 0.00 | 3.13 | |||
Lepadella (Lepadella) patella (Müller, 1773) | 0.01 | 2.08 | |||
Lepadella sp. | 0.00 | 1.04 | |||
Squatinella lamellaris (Müller, 1786) | 0.34 | 14.58 | |||
Mytilinidae | Mytilina mucronata (Müller, 1773) | 0.00 | 3.13 | ||
Notommatidae | Cephalodella gibba (Ehrenberg, 1830) | 0.00 | 5.21 | ||
Cephalodella gracilis (Ehrenberg, 1830) | 0.00 | 1.04 | |||
Cephalodella lipara Myers, 1924 | 0.00 | 2.08 | |||
Cephalodella mira Myers, 1934 | 0.00 | 2.08 | |||
Cephalodella sp. 1 | 0.02 | 4.17 | |||
Cephalodella sp. 2 | 0.00 | 1.04 | |||
Cephalodella sp. 3 | 0.00 | 1.04 | |||
Cephalodella sp. 4 | 0.02 | 8.33 | |||
Cephalodella sp. 5 | 0.01 | 1.04 | |||
Eothinia elongata (Ehrenberg, 1832) | 0.00 | 1.04 | |||
Notommata pachyura (Gosse, 1886) | 0.01 | 3.13 | |||
Resticula melandocus (Gosse, 1887) | 0.01 | 8.33 | |||
Taphrocampa annulosa Gosse, 1851 | 0.12 | 7.29 | |||
Philodinidae | Philodina sp. 1 | 0.20 | 29.17 | ||
Philodina sp. 2 | 0.01 | 5.21 | |||
Rotaria neptunia (Ehrenberg, 1830) | 0.06 | 16.67 | |||
Proalidae | Proales sp. | 0.03 | 2.08 | ||
Scaridiidae | Scaridium longicaudum (Müller, 1786) | 0.58 | 8.33 | ||
Synchaetidae | Polyarthra sp. | 0.95 | 21.88 | ||
Synchaeta bicornis Smith, 1904 | 1.83 | 32.29 | R07 | ||
Synchaeta pectinata Ehrenberg, 1832 | 1.73 | 37.50 | R04 | ||
Synchaeta grandis Zacharias, 1893 | 1.10 | 23.96 | |||
Synchaeta sp. | 0.01 | 8.33 | |||
Testudinellidae | Testudinella patina (Hermann, 1783) | 0.07 | 14.58 | ||
Tetrasiphon sp. | 0.02 | 6.25 | |||
Trichocerca brachyura (Gosse, 1851) | 0.12 | 15.63 | |||
Trichocerca lata (Jennings, 1894) | 0.00 | 1.04 | |||
Trichocerca longiseta (Schrank, 1802) | 0.00 | 1.04 | |||
Trichocerca platessa Myers, 1934 | 0.02 | 1.04 | |||
Trichocerca rattus (Müller, 1776) | 0.01 | 6.25 | |||
Trichocerca similis (Wierzejski, 1893) | 0.05 | 12.50 | |||
Trichocerca sp. 1 | 0.01 | 4.17 | |||
Trichocerca sp. 2 | 0.01 | 6.25 | |||
Trichocerca sp. 3 | 0.00 | 1.04 | |||
Trichocerca tenuior (Gosse, 1886) | 0.00 | 1.04 | |||
Trochosphaeridae | Filinia longiseta (Ehrenberg, 1834) | 1.48 | 38.54 | R02 | |
Filinia opoliensis (Zacharias, 1898) | 0.54 | 28.13 | R09 | ||
Trichotriidae | Macrochaetus sp. 1 | 0.01 | 2.08 | ||
Macrochaetus sp. 2 | 0.11 | 2.08 | |||
Copepoda | unidentified Cyclopoida | Cyclopoid sp. 1 | 4.92 | 89.58 | C02 |
Cyclopoid sp. 2 | 0.01 | 6.25 | |||
Cyclopoid sp. 3 | 0.04 | 9.38 | |||
Cyclopoid sp. 4 | 0.03 | 5.21 | |||
Cyclopoid sp. 5 | 0.10 | 38.54 | |||
Cyclops strenuus strenuus Fischer, 1851 | 0.03 | 10.42 | |||
Ectocyclops sp. | 0.27 | 51.04 | |||
Corycaeidae | Corycaeus sp. | 0.00 | 1.04 | ||
Oithonidae | Oithona sp. | 0.72 | 36.46 | C04 | |
Oithona plumifera Baird, 1843 | 0.00 | 1.04 | |||
Oncaeidae | Oncaea clevei Früchtl, 1923 | 0.22 | 8.33 | ||
unidentified Calanoida | Calanoid spp. | 1.26 | 35.42 | C05 | |
Calanoid sp. 1 | 3.69 | 75.00 | C03 | ||
Calanoid sp. 2 | 0.01 | 3.13 | |||
Temoridae | Temora turbinata (Dana, 1849) | 0.00 | 2.08 | ||
Ectinosomatidae | Microsetella sp. | 0.41 | 58.33 | ||
Microsetella norvegica (Boeck, 1865) | 0.00 | 3.13 | |||
Microsetella rosea (Dana, 1847) | 0.00 | 1.04 | |||
Miraciidae | Macrosetella gracilis (Dana, 1846) | 0.01 | 9.38 | ||
Tachidiidae | Euterpina acutifrons (Dana, 1847) | 0.02 | 3.13 | ||
Nauplius | 56.27 | 97,92 | C01 | ||
Cladocera | Chydoridae | Alona sp. | 0.00 | 2.08 | |
Daphniidae | Ceriodaphnia sp. | 0.03 | 17.71 | ||
Macrothricidae | Macrothrix sp. | 0.01 | 2.08 | ||
Moinidae | Moina micrura Kurz, 1875 | 0.19 | 29.17 | ||
Sididae | Penilia avirostris Dana, 1849 | 0.00 | 1.04 | ||
Eumalacostraca | Mysidae | Mysis sp. | 0.02 | 5.21 | |
Mollusca | Undetermined | Mollusca spp. | 2.52 | 73.96 | M01 |
Ostracoda | Undetermined | Ostracod sp. | 0.04 | 15.63 |
WMW-Test | H-Test | |||||||
---|---|---|---|---|---|---|---|---|
Spatial Average | Temporal Average | Temporal Analysis χ2 (df = 5) | Spatial Analysis χ2 (df = 15) | |||||
Variable | Min. | Max. | S.L. | Min. | Max. | S.L. | ||
Environmental variables | ||||||||
TEMP (°C) | 25.9 | 31.4 | *** | 28.4 | 30.1 | n.s. | 75.8 *** | n.s. |
SAL | 1.9 | 23.2 | *** | 5.4 | 24.9 | *** | 62.5 *** | 25.4 * |
DEPTH (m) | 2.0 | 2.6 | ** | 1.0 | 6.4 | *** | 14.8 * | 77.0 *** |
TURB (FTU) | 5.6 | 110.1 | *** | 7.3 | 92.2 | *** | 52.7 *** | n.s. |
%POM (%) | 24.3 | 63.9 | ** | 26.1 | 61.9 | *** | 45.2 *** | n.s. |
DO (mg L−1) | 5.6 | 7.3 | ** | 5.4 | 7.7 | *** | 15.3 ** | 37.6 ** |
CHL-a (mg m−3) | 5.3 | 16.5 | ** | 5.9 | 21.7 | * | 29.6 *** | n.s. |
Zooplankton | ||||||||
Species Richness | 9 | 30 | *** | 13 | 18 | n.s. | 65.5 *** | n.s. |
H’ | 1.2 | 3.5 | *** | 1.7 | 2.7 | n.s. | 55.4 *** | n.s. |
J | 0.4 | 0.7 | *** | 0.4 | 0.7 | ** | 31.6 *** | n.s. |
Zooplankton abundance (ind L−1) | 36.5 | 74.9 | n.s. | 20.0 | 193.9 | * | n.s. | n.s. |
Copepod relative abundance (%) | 27.0 | 93.4 | *** | 46.2 | 87.7 | n.s. | 47.6 *** | n.s. |
Rotifer relative abundance (%) | 6.3 | 71.5 | *** | 11.1 | 50.9 | * | 53.8 *** | n.s. |
Variable | Seasons F-Value (df = 5) | Sub-Regions F-Value (df = 2) | Seasons × Sub-Regions F-Value (df = 10) |
---|---|---|---|
Environmental variables | |||
TEMP (°C) | 192.5 *** | 10.7 *** | n.s. |
SAL | 47.8 *** | 8.7 *** | n.s. |
DEPTH (m) | 6.3 *** | 58.6 *** | n.s. |
TURB (FTU) | 35.0 *** | 13.1 *** | 2.7 ** |
%POM (%) | 14.4 *** | n.s. | n.s. |
DO (mg L−1) | 4.8 *** | 4.0 * | n.s. |
CHL-a (mg m−3) | 9.9 *** | 4.1 * | n.s. |
Zooplankton | |||
Species richness | 42.2 *** | n.s. | n.s. |
H’ | 26.5 *** | n.s. | n.s. |
J | 9.5 *** | n.s. | n.s. |
Zooplankton abundance (ind L−1) | n.s. | n.s. | n.s. |
Copepod relative abundance (%) | 18.4 *** | n.s. | n.s. |
Rotifer relative abundance (%) | 21.4 *** | n.s. | n.s. |
Zooplankton Taxa | Code | %Deviance | SAL | TURB | TEMP | OXY | WL | CHL-a | POM |
---|---|---|---|---|---|---|---|---|---|
Nauplius | C01 | 57.2 | |||||||
Cyclopoid sp. 1 | C02 | 71.2 | |||||||
Calanoid sp. 1 | C03 | 58.5 | |||||||
Oithona sp. | C04 | 82.1 | |||||||
Calanoid spp. | C05 | 33.4 | |||||||
Brachionus plicatilis | R01 | 72.2 | |||||||
Filinia longiseta | R02 | 79.8 | |||||||
Brachionus angularis | R03 | 91.1 | |||||||
Synchaeta pectinata | R04 | 63.9 | |||||||
Keratella tropica | R05 | 80.1 | |||||||
Brachionus falcatus | R06 | 89 | |||||||
Synchaeta bicornis | R07 | 81.2 | |||||||
Brachionus caudatus | R08 | 94.5 | |||||||
Filinia opoliensis | R09 | 89.4 | |||||||
Lecane leontina | R10 | 82.3 | |||||||
Mollusca spp. | M01 | 67.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaigneau, A.; Ouinsou, F.T.; Akodogbo, H.H.; Dobigny, G.; Avocegan, T.T.; Dossou-Sognon, F.U.; Okpeitcha, V.O.; Djihouessi, M.B.; Azémar, F. Physicochemical Drivers of Zooplankton Seasonal Variability in a West African Lagoon (Nokoué Lagoon, Benin). J. Mar. Sci. Eng. 2023, 11, 556. https://doi.org/10.3390/jmse11030556
Chaigneau A, Ouinsou FT, Akodogbo HH, Dobigny G, Avocegan TT, Dossou-Sognon FU, Okpeitcha VO, Djihouessi MB, Azémar F. Physicochemical Drivers of Zooplankton Seasonal Variability in a West African Lagoon (Nokoué Lagoon, Benin). Journal of Marine Science and Engineering. 2023; 11(3):556. https://doi.org/10.3390/jmse11030556
Chicago/Turabian StyleChaigneau, Alexis, François Talomonwo Ouinsou, Hervé Hotèkpo Akodogbo, Gauthier Dobigny, Thalasse Tchémangnihodé Avocegan, Fridolin Ubald Dossou-Sognon, Victor Olaègbè Okpeitcha, Metogbe Belfrid Djihouessi, and Frédéric Azémar. 2023. "Physicochemical Drivers of Zooplankton Seasonal Variability in a West African Lagoon (Nokoué Lagoon, Benin)" Journal of Marine Science and Engineering 11, no. 3: 556. https://doi.org/10.3390/jmse11030556
APA StyleChaigneau, A., Ouinsou, F. T., Akodogbo, H. H., Dobigny, G., Avocegan, T. T., Dossou-Sognon, F. U., Okpeitcha, V. O., Djihouessi, M. B., & Azémar, F. (2023). Physicochemical Drivers of Zooplankton Seasonal Variability in a West African Lagoon (Nokoué Lagoon, Benin). Journal of Marine Science and Engineering, 11(3), 556. https://doi.org/10.3390/jmse11030556