Applicability Evaluation and Correction of Cover and Management Factor Calculation Methods in the Purple Soil Hilly Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. C/B Factor Calculation
- (1)
- Dynamic Monitoring-B [37]
- (2)
- Cai-C [26]
- (3)
- Van-C [38]
- (4)
- Colman-C [28]
2.2.2. Soil Erosion Calculations
2.2.3. Artificial Rainfall Simulation Experiment
2.2.4. Calculation of Vegetation Cover
- (1)
- Calculation of photosynthetic vegetation cover
- (2)
- Calculation of non-photosynthetic vegetation cover
2.2.5. Statistical Analysis
2.3. Data Sources
3. Results
3.1. Results of the C/B Factor
3.2. Applicability Analysis of the C/B Factors
3.3. Establishment of the Relationship Equation for Integrated Vegetation Cover
3.4. Correction of the C/B Factor Calculation Methods
4. Discussion
4.1. The Applicability of the C/B Factor Calculation Methods in the Purple Soil Hilly Region
4.2. Correction of the C/B Factor Calculation Method for the Purple Soil Hilly Region
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Wang, N.; Jiao, J.; Chen, Y.; Tang, B.; Wang, H.; Chen, Y.; Yan, X.; Wang, Z. Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau, China. Int. J. Sediment Res. 2020, 35, 408–416. [Google Scholar] [CrossRef]
- Lizaga, I.; Latorre, B.; Gaspar, L.; Navas, A. Consensus ranking as a method to identify non-conservative and dissenting tracers in fingerprinting studies. Sci. Total Environ. 2020, 720, 137537. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Zhang, Z.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S.; Liu, B. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena 2016, 137, 256–268. [Google Scholar] [CrossRef]
- Batista, P.V.G.; Davies, J.; Silva, M.L.N.; Quinton, J.N. On the evaluation of soil erosion models: Are we doing enough? Earth-Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- Boyle, J.F.; Plater, A.J.; Mayers, C.; Turner, S.D.; Stroud, R.W.; Weber, J.E. Land use, soil erosion, and sediment yield at Pinto Lake, California: Comparison of a simplified USLE model with the lake sediment record. J. Paleolimnol. 2011, 45, 199–212. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. A comparative study of soil erosion modelling by MMF, USLE and RUSLE. Geocarto Int. 2016, 33, 89–103. [Google Scholar] [CrossRef]
- Demirci, A.; Karaburun, A. Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, northwest Turkey. Environ. Earth Sci. 2011, 66, 903–913. [Google Scholar] [CrossRef]
- Mallick, J.; Alashker, Y.; Mohammad, S.A.-D.; Ahmed, M.; Hasan, M.A. Risk assessment of soil erosion in semi-arid mountainous watershed in Saudi Arabia by RUSLE model coupled with remote sensing and GIS. Geocarto Int. 2014, 29, 915–940. [Google Scholar] [CrossRef]
- Das, B.; Bordoloi, R.; Thungon, L.T.; Paul, A.; Pandey, P.K.; Mishra, M.; Tripathi, O.P. An integrated approach of GIS, RUSLE and AHP to model soil erosion in West Kameng watershed, Arunachal Pradesh. J. Earth Syst. Sci. 2020, 129, 94. [Google Scholar] [CrossRef]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. RUSLE a guide to conservation planning with the revised universal soil loss equation. In USDA Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1997; Volume 703. [Google Scholar]
- Liu, B.; Zhang, K.; Yun, X. An Empirical Soil Loss Equation. In Proceedings of the 12th ISCO Conference, Beijing, China, 26–31 May 2002. [Google Scholar]
- Liu, B.; Xie, Y.; Zhang, K. Soil Erosion Prediction Model; China Science and Technology Press: Beijing, China, 2001. [Google Scholar]
- Zang, J.; Zuo, C.; Li, X. Probe of the Effect of Natural Factors on Soil Erosion. J. Anhui Agric. Sci. 2008, 3, 1140–1141+1176. [Google Scholar] [CrossRef]
- Wen, X.; Deng, X.; Zhang, F. Scale effects of vegetation restoration on soil and water conservation in a semi-arid region in China: Resources conservation and sustainable management. Resour. Conserv. Recycl. 2019, 151, 104474. [Google Scholar] [CrossRef]
- Almagro, A.; Thomé, T.C.; Colman, C.B.; Pereira, R.B.; Marcato Junior, J.; Rodrigues, D.B.B.; Oliveira, P.T.S. Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. Int. Soil Water Conserv. Res. 2019, 7, 325–334. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; United States Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Wanzhong, W.; Juying, J. Qutantitative evaluation on factors influencing soil erosion in China. Bull. Soil Water Conserv. 1996, 5, 1–20. [Google Scholar]
- Yan, Z.; Baoyuan, L.; Peijun, S.; Zhongshan, J. Crop cover factor estimating for soil loss prediction. Acta Ecol. Sin. 2001, 21, 1050–1056. [Google Scholar]
- Hongxia, X. Evaluation of Spatial and Temporal Changes of Soil Erosion and Environmental Effect of Soil and Water Conservation in Yanhe River Basin. Ph.D. Thesis, Shaanxi Normal University, Xi’an, China, 2008. [Google Scholar]
- Fan, J.; Wang, N.; Chen, G.; Jiao, J.; Xie, Y. Practice factor of soil and water conservation in Northeastern China. Sci. Soil Water Conserv. 2011, 9, 75–78+92. (In Chinese) [Google Scholar]
- Guo, J.; Gu, Z.; Yuan, S.; Zhang, K. Calculation and Evaluation of Factor Values of Soil and Water Conservation Measures in Southwest Karst Area. Soil Water Conserv. 2014, 10, 50–53+71. (In Chinese) [Google Scholar]
- Xin, Y.; Liu, G.; Xie, Y.; Gao, Y.; Liu, B.; Shen, B. Effects of soil conservation practices on soil losses from slope farmland in northeastern China using runoff plot data. Catena 2019, 174, 417–424. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Yu, S.; Eerdun, H.; Huishi, D. Application of Vegetation Cover in Soil Erosion Modulus Calculation. Bull. Soil Water Conserv. 2013, 33, 185–189+309. [Google Scholar]
- Shi, T.; Jianxiang, L.; Ke, Z.; Zhiqiang, W. Research on Potential Soil Erosion in the He-Long Region of the Middle Reaches of the Yellow River. J. Nat. Sci. Hunan Norm. Univ. 2014, 37, 1–6. [Google Scholar]
- Chongfa, C.; Shuwen, D.; Zhihua, S.; Li, H.; Guanyuan, Z. Study of Applying USLE and Geographical Information System IDRISI to Predict Soil Erosion in Small Watershed. J. Soil Water Conserv. 2000, 14, 19–24. [Google Scholar]
- Knijff, J.; Jones, R.; Montanarella, L. Soil Erosion Risk Assessment in Italy; European Soil Bureau: Brussels, Belgium, 2002. [Google Scholar]
- Barbosa Colman, C.; Oliveira, P.T.; Almagro, A.; Filho, B. Impacts of Climate and Land Use Change on Soil Erosion in the Upper Paraguay Basin. In Proceedings of the GRSS YP & ISPRS SC Summer School 2018, Campo Grande, Brazil, 29 October–1 November 2018. [Google Scholar]
- Guangzhen, W.; Jingpu, W.; Xueyong, Z.; Liu, H.; Min, Z. A Review on Estimating Fractional Cover of Non-photosynthetic Vegetation by Using Remote Sensing. Remote Sens. Technol. Appl. 2018, 33, 1–9. [Google Scholar]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Jingzhong, L. Study on Remote Sensing Extraction of Structural Vegetation Factors for Regional Soil Erosion. Master’s Thesis, Northwest University, Kirkland, WA, USA, 2009. [Google Scholar]
- Ting, Z. Remote Sensing Modeling of Structural Vegetation Cover in Yanhe River Basin, Northern Shaanxi, China. Master’s Thesis, Northwest University, Kirkland, WA, USA, 2013. [Google Scholar]
- Ding, L.; Fu, S.; Liu, B.; Yu, B.; Zhang, G.; Zhao, H. Effects of Pinus tabulaeformis litter cover on the sediment transport capacity of overland flow. Soil Tillage Res. 2020, 204, 104685. [Google Scholar] [CrossRef]
- Miura, S.; Ugawa, S.; Yoshinaga, S.; Keizo Hirai, T.Y. Floor Cover Percentage Determines Splash Erosion in Chamaecyparis obtusa Forests. Soil Sci. Soc. Am. J. 2015, 79, 1782–1791. [Google Scholar] [CrossRef]
- Chen, R.; Zhu, Y.; Zhang, J.; Wen, A.; Hu, S.; Luo, J.; Li, P. Determination of Contributing Area Threshold and Downscaling of Topographic Factors for Small Watersheds in Hilly Areas of Purple Soil. Land 2024, 13, 1193. [Google Scholar] [CrossRef]
- Ruiyin, C.; Dongchun, Y.; Anbang, W.; Chenggang, L.; Zhonglin, S. Research on Soil Erosion in Key Prevention and Control Region of Soil and Water Loss Based on GIS/CSLE in Sichuan Province. J. Soil Water Conserv. 2020, 34, 17–26. [Google Scholar]
- Knijff, J.M.v.d.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; European Soil Bureau: Brussels, Belgium, 2000. [Google Scholar]
- Suhua, F.; Baoyuan, L.; Guiyun, Z.; Zhongxuan, S.; Xiaoli, Z. Calculation tool of topographic factors. Science of Soil and Water Conservation 2015, 13, 105–110. [Google Scholar]
- Zhang, H.; Zhang, R.; Qi, F.; Liu, X.; Niu, Y.; Fan, Z.; Zhang, Q.; Li, J.; Yuan, L.; Song, Y.; et al. The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. Catena 2018, 165, 465–472. [Google Scholar] [CrossRef]
- Huang, C.L.; Yang, Q.K.; Cao, X.Y.; Li, Y.R. Assessment of the Soil Erosion Response to Land Use and Slope in the Loess Plateau-A Case Study of Jiuyuangou. Water 2020, 12, 529. [Google Scholar] [CrossRef]
- Duan, X.; Bai, Z.; Rong, L.; Li, Y.; Ding, J.; Tao, Y.; Li, J.; Li, J.; Wang, W. Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. Catena 2020, 184, 104237. [Google Scholar] [CrossRef]
- Shi, W.; Huang, M.; Barbour, S.L. Storm-based CSLE that incorporates the estimated runoff for soil loss prediction on the Chinese Loess Plateau. Soil Tillage Res. 2018, 180, 137–147. [Google Scholar] [CrossRef]
- Liu, B.; Guo, S.; Li, Z.; Xie, Y.; Zhang, K.; Liu, X. Sampling survey of water erosion in China. Soil Water Conserv. 2013, 10, 26–34. (In Chinese) [Google Scholar]
- Li, Z.; Fu, S.; Liu, B. sampling program of water erosion inventory in the first national water resource survey. Sci. Soil Water Conserv. 2012, 10, 77–81. (In Chinese) [Google Scholar]
- Wang, X.; Jia, K.; Liang, S.; Li, Q.; Wei, X.; Yao, Y.; Zhang, X.; Tu, Y. Estimating Fractional Vegetation Cover From Landsat-7 ETM+ Reflectance Data Based on a Coupled Radiative Transfer and Crop Growth Model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5539–5546. [Google Scholar] [CrossRef]
- Chao, Z. Remote sensing inversion and analysis of temporal and spatial variations in the cover of dead leaf layer. Master’s Thesis, Northwest University, Kirkland, WA, USA, 2019. [Google Scholar]
- Cao, X.; Chen, J.; Matsushita, B.; Imura, H. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area. Int. J. Remote Sens. 2010, 31, 1589–1604. [Google Scholar] [CrossRef]
- Daughtry, C.; Huntjr, E. Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover. Remote Sens. Environ. 2008, 112, 1647–1657. [Google Scholar] [CrossRef]
- Santarsiero, V.; Lanorte, A.; Nolè, G.; Cillis, G.; Tucci, B.; Murgante, B. Analysis of the Effect of Soil Erosion in Abandoned Agricultural Areas: The Case of NE Area of Basilicata Region (Southern Italy). Land 2023, 12, 645. [Google Scholar] [CrossRef]
- Cao, Y.; Hua, L.; Tang, Q.; Liu, L.; Cai, C. Evaluation of monthly-scale soil erosion spatio-temporal dynamics and identification of their driving factors in Northeast China. Ecol. Indic. 2023, 150, 110187. [Google Scholar] [CrossRef]
- Achu, A.L.; Thomas, J. Soil erosion and sediment yield modeling in a tropical mountain watershed of the southern Western Ghats, India using RUSLE and Geospatial tools. Total Environ. Res. Themes 2023, 8, 100072. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Van Leeuwen, W.J.; Sammons, G. Vegetation dynamics and soil erosion modeling using remotely sensed data (MODIS) and GIS. In Proceedings of the Tenth Biennial USDA Forest Service Remote Sensing Applications Conference, Salt Lake City, UT, USA, 5–9 April 2004; pp. 5–9. [Google Scholar]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Lei, W.; Wen, Z. Research on soil erosion vegetation factor index based on community structure. J. Soil Water Conserv. 2008, 22, 68–72. [Google Scholar]
- Zhengxing, W.; Chuang, L.; Alfredo, H. From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research. Acta Ecol. Sin. 2003, 23, 979–987. [Google Scholar]
- Liu, B.; Xie, Y.; Li, Z.; Liang, Y.; Zhang, W.; Fu, S.; Yin, S.; Wei, X.; Zhang, K.; Wang, Z.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Yun, Z.; Lin, W. Runoff and Sediment Simulation in Purple Hilly Area Based on SWAT Model. Geo-Inf. Sci. 2013, 15, 401–407. [Google Scholar]
- Hua, D.; Ming, G.; Jiaxin, L.; Yingyan, W.; Zifang, W. Effects of Biochar and Straw Return on Soil Aggregate and Organic Carbon on Purple Soil Dry Slope Land. Environ. Sci. 2021, 42, 5481–5490. [Google Scholar] [CrossRef]
- Xiaoli, J.; Genwei, C.; Zelong, M.; Jihui, F. Modeling of Soil Erosion for Lizixi Basin in Sichuan Hilly Region. J. Sichuan Agric. Univ. 2012, 30, 56–59. [Google Scholar]
- Zhang, S.; Hou, X.; Wu, C.; Zhang, C. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss. Sci Total Environ. 2020, 706, 134489. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Wang, T. How land use change contributes to reducing soil erosion in the Jialing River Basin, China. Agric. Water Manag. 2014, 133, 65–73. [Google Scholar] [CrossRef]
Number | Data | Source |
---|---|---|
1 | Meteorological data | China Meteorological Science Data Sharing Service Platform (http://data.cma.cn/, accessed on 5 May 2024). |
2 | Elevation data | ALOS satellite data (https://search.asf.alaska.edu/#/, accessed on 10 May 2024). |
3 | Land use data | Resources and Environmental Sciences Data Center, Chinese Academy of Sciences (http://www.resdc.cn/, accessed on 10 May 2024). |
4 | Soil data | National Tibetan Plateau Scientific Data Center (https://data.tpdc.ac.cn/, accessed on 5 May 2024). |
5 | NDVI data | MOD13Q1 data of 2023 (https://lpdaac.usgs.gov/, accessed on 5 July 2024). |
6 | DFI data | Landsat 8 OLI data of 2023 (https://www.gscloud.cn/ accessed on 5 July 2024). |
Clit | B | |||||
---|---|---|---|---|---|---|
Clit | Pearson correlation | 1 | 0.853 ** | −0.515 | −0.532 | −0.546 |
Sig. (2-tailed) | 0.007 | 0.191 | 0.174 | 0.161 | ||
B | Pearson correlation | 0.853 ** | 1 | −0.325 | −0.296 | −0.304 |
Sig. (2-tailed) | 0.007 | 0.433 | 0.476 | 0.464 | ||
Pearson correlation | −0.515 | −0.325 | 1 | 0.947 ** | 0.936 ** | |
Sig. (2-tailed) | 0.191 | 0.433 | 0.000 | 0.001 | ||
Pearson correlation | −0.532 | −0.296 | 0.947 ** | 1 | 0.998 ** | |
Sig. (2-tailed) | 0.174 | 0.476 | 0.000 | 0.000 | ||
Pearson correlation | −0.546 | −0.304 | 0.936 ** | 0.998 ** | 1 | |
Sig. (2-tailed) | 0.161 | 0.464 | 0.001 | 0.000 |
Non-Photosynthetic Vegetation Cover | Mean | Standard Deviation |
---|---|---|
January–March | 0.1125 | 0.1980 |
April–June | 0.1008 | 0.1724 |
July–September | 0.0706 | 0.1900 |
October–December | 0.5660 | 0.2694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Zhu, Y.; Wu, D.; Zhong, J.; Wen, A.; Wang, W.; Bi, B.; Li, Y.; Feng, J.; Jing, T. Applicability Evaluation and Correction of Cover and Management Factor Calculation Methods in the Purple Soil Hilly Region. Agriculture 2025, 15, 941. https://doi.org/10.3390/agriculture15090941
Chen R, Zhu Y, Wu D, Zhong J, Wen A, Wang W, Bi B, Li Y, Feng J, Jing T. Applicability Evaluation and Correction of Cover and Management Factor Calculation Methods in the Purple Soil Hilly Region. Agriculture. 2025; 15(9):941. https://doi.org/10.3390/agriculture15090941
Chicago/Turabian StyleChen, Ruiyin, Yonggang Zhu, Derong Wu, Jia Zhong, Anbang Wen, Wenwu Wang, Biao Bi, Yuetian Li, Jing Feng, and Tiancai Jing. 2025. "Applicability Evaluation and Correction of Cover and Management Factor Calculation Methods in the Purple Soil Hilly Region" Agriculture 15, no. 9: 941. https://doi.org/10.3390/agriculture15090941
APA StyleChen, R., Zhu, Y., Wu, D., Zhong, J., Wen, A., Wang, W., Bi, B., Li, Y., Feng, J., & Jing, T. (2025). Applicability Evaluation and Correction of Cover and Management Factor Calculation Methods in the Purple Soil Hilly Region. Agriculture, 15(9), 941. https://doi.org/10.3390/agriculture15090941