Cable-Driven Underactuated Flexible Gripper for Brown Mushroom Picking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanism Design
- Positioning: The gripper is positioned directly above the target brown mushroom (Figure 1a).
- Lowering: The gripper descends to an appropriate height for gripping (Figure 1b).
- Gripping and Measuring: The gripper grasps the mushroom, the thin-film force sensor detects the impact force, and the flexion sensor records the corresponding data. These readings are used to calculate the mushroom diameter (Figure 1c).
- Twisting and Harvesting: After securely gripping the mushroom, the rotating mechanism twists it off the mushroom bed (Figure 1d).
- Lifting: The gripper ascends, completing the harvesting operation (Figure 1e).
2.2. Fabrication
2.3. Sensing Method
2.4. Finite Element Analysis Method
2.5. Mushroom Size Method
2.6. Experiment Setup
3. Result and Discussion
3.1. Finite Element Analysis
3.2. Sensing Calibration
3.3. Field Experiments
4. Discussion
5. Conclusions
- (1)
- A compact cable-driven gripper was designed with a gripping module, a lifting module, and a rotating module to pick mushrooms following a five-step process. Static mechanical analysis of the gripper was conducted using ANSYS Workbench to determine the optimal cable retraction distance, which was applied in position control.
- (2)
- An in situ diameter measurement method was proposed. The flexible fingers were equipped with integrated bending sensors on their outer surfaces to monitor bending states, and thin-film tactile sensors were attached to the inner surfaces of the fingertips to capture precise contact information during mushroom gripping. Using the bending and tactile data, a formula for measuring the diameter of brown mushrooms was derived and analyzed in detail.
- (3)
- Field experiments showed that the proposed gripper can achieve non-damaging picking based on position control without requiring force control. Additionally, the average diameter measurement accuracy was 96.6% for medium-sized mushrooms and 96.1% for large mushrooms, with an average harvesting time of approximately 7.5 s per mushroom.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mleczek, M.; Rzymski, P.; Budka, A.; Siwulski, M.; Jasińska, A.; Kalač, P.; Poniedziałek, B.; Gąsecka, M.; Niedzielski, P. Elemental characteristics of mushroom species cultivated in China and Poland. J. Food Compos. Anal. 2018, 66, 168–178. [Google Scholar] [CrossRef]
- Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The antioxidant potential of different edible and medicinal mushrooms. Biomed. Pharmacother. 2022, 147, 112621. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Goggi, S.; Giampieri, F.; Baroni, L. A review of mushrooms in human nutrition and health. Trends Food Sci. Technol. 2021, 117, 60–73. [Google Scholar] [CrossRef]
- Atila, F.; Owaid, M.N.; Shariati, M.A. The nutritional and medical benefits of Agaricus bisporus: A review. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 281–286. [Google Scholar] [CrossRef]
- Iqbal, T.; Sohaib, M.; Iqbal, S.; Rehman, H. Exploring Therapeutic Potential of Pleurotus ostreatus and Agaricus bisporus Mushrooms against Hyperlipidemia and Oxidative Stress Using Animal Model. Foods 2024, 13, 709. [Google Scholar] [CrossRef]
- Koirala, B.; Kafle, A.; Nguyen, H.C.; Kang, J.; Zakeri, A.; Balan, V.; Merchant, F.; Benhaddou, D.; Zhu, W. A Hybrid Three-Finger Gripper for Automated Harvesting of Button Mushrooms. Actuators 2024, 13, 287. [Google Scholar] [CrossRef]
- Koirala, B.; Zakeri, A.; Kang, J.; Kafle, A.; Balan, V.; Merchant, F.A.; Benhaddou, D.; Zhu, W. Robotic Button Mushroom Harvesting Systems: A Review of Design, Mechanism, and Future Directions. Appl. Sci. 2024, 14, 9229. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.-W. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci. Technol. 2019, 90, 63–75. [Google Scholar] [CrossRef]
- Wu, X.; Guan, W.; Yan, R.; Lei, J.; Xu, L.; Wang, Z. Effects of UV-C on antioxidant activity, total phenolics and main phenolic compounds of the melanin biosynthesis pathway in different tissues of button mushroom. Postharvest Biol. Technol. 2016, 118, 51–58. [Google Scholar] [CrossRef]
- Mavridis, P.; Mavrikis, N.; Mastrogeorgiou, A.; Chatzakos, P. Low-cost, accurate robotic harvesting system for existing mushroom farms. In Proceedings of the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Seattle, WA, USA, 28–30 June 2023; pp. 144–149. [Google Scholar]
- Shi, H.; Xu, G.; Lu, W.; Ding, Q.; Chen, X. An Electric Gripper for Picking Brown Mushrooms with Flexible Force and In Situ Measurement. Agriculture 2024, 14, 1181. [Google Scholar] [CrossRef]
- Zied, D.C.; Pardo-Giménez, A. Edible and Medicinal Mushrooms: Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Benos, L.; Tsaopoulos, D.; Bochtis, D. A review on ergonomics in agriculture. Part I: Manual operations. Appl. Sci. 2020, 10, 1905. [Google Scholar] [CrossRef]
- Dianat, I.; Afshari, D.; Sarmasti, N.; Sangdeh, M.S.; Azaddel, R. Work posture, working conditions and musculoskeletal outcomes in agricultural workers. Int. J. Ind. Ergon. 2020, 77, 102941. [Google Scholar] [CrossRef]
- Kirkhorn, S.R.; Earle-Richardson, G.; Banks, R. Ergonomic risks and musculoskeletal disorders in production agriculture: Recommendations for effective research to practice. J. Agromed. 2010, 15, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Murugan, A.S.; Recchia, A.; Kim, E.; Urbanic, J. Investigating musculoskeletal risks in manual mushroom harvesting: An ergonomic field study in canadian farms. Soc. Sci. Humanit. Open 2024, 10, 101049. [Google Scholar] [CrossRef]
- Reed, J.; Miles, S.; Butler, J.; Baldwin, M.; Noble, R. AE—Automation and emerging technologies: Automatic mushroom harvester development. J. Agric. Eng. Res. 2001, 78, 15–23. [Google Scholar] [CrossRef]
- Reed, J.; Tillett, R. Initial experiments in robotic mushroom harvesting. Mechatronics 1994, 4, 265–279. [Google Scholar] [CrossRef]
- Yang, S.; Ji, J.; Cai, H.; Chen, H. Modeling and force analysis of a harvesting robot for button mushrooms. IEEE Access 2022, 10, 78519–78526. [Google Scholar] [CrossRef]
- Burton, K. Cultural factors affecting mushroom quality-cause and control of bruising. Mushroom Sci. 2004, 16, 397–402. [Google Scholar]
- Weijn, A.; Tomassen, M.; Bastiaan-Net, S.; Wigham, M.; Boer, E.; Hendrix, E.; Baars, J.; Sonnenberg, A.; Wichers, H.; Mes, J. A new method to apply and quantify bruising sensitivity of button mushrooms. LWT 2012, 47, 308–314. [Google Scholar] [CrossRef]
- Recchia, A.; Strelkova, D.; Urbanic, J.; Kim, E.; Anwar, A.; Murugan, A.S. A prototype pick and place solution for harvesting white button mushrooms using a collaborative robot. Robot. Rep. 2023, 1, 67–81. [Google Scholar] [CrossRef]
- Mbakop, S.; Tagne, G.; Lagache, A.; Youcef-Toumi, K.; Merzouki, R. Integrated design of a bio-inspired soft gripper for mushrooms harvesting. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 3–7 April 2023; pp. 1–6. [Google Scholar]
- Zhao, K.; Li, H.; Ji, J.; Li, Q.; Li, M.; He, Y.; Li, J.; Xing, S. Pressure-stabilized flexible end-effector for selective picking of agaricus bisporus. Agriculture 2023, 13, 2256. [Google Scholar] [CrossRef]
- Li, J.; Feng, Q.; Ru, M.; Sun, J.; Guo, X.; Zheng, W. Design of Shiitake Mushroom Robotic Picking Grasper: Considering Stipe Compressive Stress Relaxation. Machines 2024, 12, 241. [Google Scholar] [CrossRef]
- Tao, K.; Wang, Z.; Yuan, J.; Liu, X. Design of a novel end-effector for robotic bud thinning of Agaricus bisporus mushrooms. Comput. Electron. Agric. 2023, 210, 107880. [Google Scholar] [CrossRef]
- Lu, W.; Zou, M.; Shi, H.; Wang, L.; Deng, Y. Technology of visual identification—Measuring—Location for brown mushroom picking based on YOLO v5—TL. Trans. Chin. Soc. Agric. Mach. 2022, 53, 341–348. [Google Scholar]
- Ling, W.; Wei, X.; Kaiwei, D.; Wei, L.; Jiahao, Z.; Jun, Z. Portabella mushrooms measurement in situ based on SR300 depth camera. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 13–19+108. [Google Scholar]
- Ji, Q.; Lu, W.; Song, A.; Wang, P.; Ding, Y.; Wang, L. Design of An Intelligent Soft Gripper for On-line Measurement of Fruit Size. Jiangsu J. Agric. Sci. 2020, 36, 8. [Google Scholar]
- den Ouden, M. Mushroom Signals: A Practical Guide to Optimal Mushroom Growing; Roodbont Publishers: Zutphen, The Netherlands, 2016. [Google Scholar]
- Boyce, M.C.; Arruda, E.M. Constitutive models of rubber elasticity: A review. Rubber Chem. Technol. 2000, 73, 504–523. [Google Scholar] [CrossRef]
- Haonan, S. Design of Mobile Robot for Picking Bisporus Mushroom. Master’s Thesis, NJAU, Nanjing, China, 2021. [Google Scholar]
- Huang, M.; Jiang, X.; He, L.; Choi, D.; Pecchia, J. Hand-picking Dynamic Analysis for Robotic Agaricus Mushroom Harvesting. In Proceedings of the 2020 ASABE Annual International Virtual Meeting, Online, 13–15 July 2020; p. 1. [Google Scholar]
- Huang, M.; Jiang, X.; He, L.; Choi, D.; Pecchia, J.; Li, Y. Development of a robotic harvesting mechanism for button mushrooms. Trans. ASABE 2021, 64, 565–575. [Google Scholar] [CrossRef]
- Rai, R.; Arumuganathan, T. Post Harvest Technology of Mushrooms; National Research Centre for Mushroom, Indian Council of Agricultural Research: Solan, India, 2008.
Parameter | Medium-Sized Mushrooms | Large Mushrooms | ||||
---|---|---|---|---|---|---|
M1 | M2 | M3 | L1 | L2 | L3 | |
Mushroom Cap Width (mm) | 69 ± 5.6 | 71 ± 6.5 | 67 ± 3.8 | 91.5 ± 6.27 | 91.1 ± 5.7 | 91.0 ± 7.3 |
Groups | Groups | Damage Rate | Diameter Accuracy | Picking Time |
---|---|---|---|---|
Middle Brown Mushroom | M1 | 0% | 96.2% | 7.5 s (determined by the robot) |
M2 | 0% | 95.9% | ||
M3 | 0% | 97.6% | ||
Average Value | 0% | 96.6% | ||
Large Brown Mushroom | L1 | 0% | 95.7% | |
L2 | 0% | 97.2% | ||
L3 | 0% | 95.4% | ||
Average Value | 0% | 96.1% |
Author | Structure | Diameter Accuracy | Control Method | Damage Rate |
---|---|---|---|---|
This work | Cable-driven | 96.6% | Position control | 0% |
Our [29] | Pneumatic gripper | 95% | Force control | No application |
Our [11] | Hybrid gripper | 97.3% | Force control | 1.67% |
Koirala et al. [6] | Hybrid gripper | No application | Force control | 0% |
Mbakop et al. [23] | Pneumatic gripper | No application | Bending control | 2% |
Zhao et al. [24] | Suction cup with particle jamming | No application | Pressure control | 2.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Xu, G.; Xie, Y.; Lu, W.; Ding, Q.; Chen, X. Cable-Driven Underactuated Flexible Gripper for Brown Mushroom Picking. Agriculture 2025, 15, 832. https://doi.org/10.3390/agriculture15080832
Shi H, Xu G, Xie Y, Lu W, Ding Q, Chen X. Cable-Driven Underactuated Flexible Gripper for Brown Mushroom Picking. Agriculture. 2025; 15(8):832. https://doi.org/10.3390/agriculture15080832
Chicago/Turabian StyleShi, Haonan, Gaoming Xu, Yixuan Xie, Wei Lu, Qishuo Ding, and Xinxin Chen. 2025. "Cable-Driven Underactuated Flexible Gripper for Brown Mushroom Picking" Agriculture 15, no. 8: 832. https://doi.org/10.3390/agriculture15080832
APA StyleShi, H., Xu, G., Xie, Y., Lu, W., Ding, Q., & Chen, X. (2025). Cable-Driven Underactuated Flexible Gripper for Brown Mushroom Picking. Agriculture, 15(8), 832. https://doi.org/10.3390/agriculture15080832