Abstract
The vibration of the combine harvester header assembly directly affects harvesting efficiency and operational quality. To address the insufficient dynamic characterization of the cantilever conveying trough under complex field excitations, this study systematically analyzes the vibration response characteristics of the header assembly under multi-source coupled excitation through field experiments and theoretical modeling. Acceleration sensors arranged at three measurement points on the header bottom collected vibration data, revealing that the dominant vibration frequency of the header has a deterministic harmonic relationship with the threshing drum’s operating frequency (3rd harmonic on the left side, 1.5th harmonic on the right side), demonstrating dynamic coupling effects within the integrated system. Through acceleration response analysis at four symmetric measurement points on the connection, the external excitation force was quantified as a sinusoidal function correlated to the feed quantity (F = 1094.4 sin(50πt/3)). A damped pendulum model of the cantilever conveying trough was established using the Lagrange method. Validation results show that the error between the predicted steady-state swing amplitude and measured values is only 1.11–4.3%, confirming the effectiveness of this simplified model in characterizing the system’s steady-state response. This research provides a theoretical foundation and methodological support for dynamic characterization, parameter optimization, and stability control of the cantilever header system in combine harvesters.