You are currently viewing a new version of our website. To view the old version click .
Agriculture
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

24 November 2025

Prediction Model for the Oscillation Trajectory of Trellised Tomatoes Based on ARIMA-EEMD-LSTM

,
,
,
,
,
and
1
College of Engineering, Nanjing Agriculture University, Nanjing 210031, China
2
College of Mechanical and Electricronic, Nanjing Forestry University, Nanjing 210037, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Key Technology Research and Applications of Agricultural Inspection Robots Based on Machine Vision and Artificial Intelligence

Abstract

Second-order damping oscillation models are incapable of precisely predicting superimposed and multi-fruit collision-induced oscillations. In view of this problem, an ARIMA-EEMD-LSTM hybrid model for predicting the oscillation trajectories of trellised tomatoes was proposed in this study. First, the oscillation trajectories of trellised tomatoes under different picking forces were captured with the aid of the Nokov motion capture system, and then the collected oscillation trajectory datasets were then divided into training and test subsets. Afterwards, the ensemble empirical mode decomposition (EEMD) method was employed to decompose oscillation signals into multiple intrinsic mode function (IMF) components, of which different components were predicted by different models. Specifically, high-frequency components were predicted by the long short-term memory (LSTM) model while low-frequency components were predicted by the autoregressive integrated moving average (ARIMA) model. The final oscillation trajectory prediction model for trellised tomatoes was constructed by integrating these components. Finally, the constructed model was experimentally validated and applied to an analysis of single-fruit oscillations and multi-fruit oscillations (including collision oscillations and superposition oscillations). The following experimental results were yielded: Under single-fruit oscillation conditions, the prediction accuracy reached an RMSE of 0.1008–0.2429 mm, an MAE of 0.0751–0.1840 mm, and an MAPE of 0.01–0.06%. Under multi-fruit oscillation conditions, the prediction accuracy yielded an RMSE of 0.1521–0.6740 mm, an MAE of 0.1084–0.5323 mm, and an MAPE of 0.01–0.27%. The research results serve as a reference for the dynamic harvesting prediction of tomato-picking robots and contribute to improvement of harvesting efficiency and success rates.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.