Leaning on Smart Agricultural Systems for Crop Monitoring
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Voss-Fels, K.P.; Stahl, A.; Hickey, L.T. Q&A: Modern Crop Breeding for Future Food Security. BMC Biol. 2019, 17, 18. [Google Scholar] [CrossRef]
- Occelli, M.; Mukerjee, R.; Miller, C.; Porciello, J.; Puerto, S.; Garner, E.; Guerra, M.; Gomez, M.I.; Tufan, H.A. A Scoping Review on Tools and Methods for Trait Prioritization in Crop Breeding Programmes. Nat. Plants 2024, 10, 402–411. [Google Scholar] [CrossRef]
- Goddard, M.E. Consensus and Debate in the Definition of Breeding Objectives. J. Dairy Sci. 1998, 81, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Gepts, P.; Hancock, J. The Future of Plant Breeding. Crop Sci. 2006, 46, 1630–1634. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Romero, A.; Lopes, M.S. Heading and Maturity Date Prediction Using Vegetation Indices: A Case Study Using Bread Wheat, Barley and Oat Crops. Eur. J. Agron. 2024, 160, 127330. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics—Technologies to Relieve the Phenotyping Bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Reynolds, M.; Chapman, S.; Crespo-Herrera, L.; Molero, G.; Mondal, S.; Pequeno, D.N.L.; Pinto, F.; Pinera-Chavez, F.J.; Poland, J.; Rivera-Amado, C.; et al. Breeder Friendly Phenotyping. Plant Sci. 2020, 295, 110396. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Romano, E.; Fania, F.; Pecorella, I.; Spadanuda, P.; Roncetti, M.; Zullo, D.; Giuntoli, G.; Bisaglia, C.; Bragaglio, A.; Bergonzoli, S.; et al. Stability Maps Using Historical NDVI Images on Durum Wheat to Understand the Causes of Spatial Variability. Precis. Agric. 2025, 26, 26. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Fernandez-Gallego, J.A.; Vergara-Díaz, O.; Nieto-Taladriz, M.T.; Araus, J.L. UAV and Ground Image-Based Phenotyping: A Proof of Concept with Durum Wheat. Remote Sens. 2019, 11, 1244. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Du, J.; Guo, X.; Wen, W.; Gu, S.; Wang, J.; Fan, J. Crop Phenomics: Current Status and Perspectives. Front. Plant Sci. 2019, 10, 714. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing Sustainable Productivity with Millions of Smallholder Farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Stone, M.L.; Martin, K.L.; Freeman, K.W.; Mullen, R.W.; Zhang, H.; Schepers, J.S.; Johnson, G.V. Optical Sensor-Based Algorithm for Crop Nitrogen Fertilization. Commun. Soil. Sci. Plant Anal. 2005, 36, 2759–2781. [Google Scholar] [CrossRef]
- Lekakis, E.; Perperidou, D.; Kotsopoulos, S.; Simeonidou, P. Producing Mid-Season Nitrogen Application Maps for Arable Crops, by Combining Sentinel-2 Satellite Images and Agrometeorological Data in a Decision Support System for Farmers. The Case of NITREOS. In IFIP Advances in Information and Communication Technology, Proceedings of the 13th International Symposium on Environmental Software Systems, Wageningen, The Netherlands, 5–7 February 2020; Springer: Berlin/Heidelberg, Germany, 2020; Volume 554, pp. 102–114. [Google Scholar]
- Marti-Jerez, K.; Català-Forner, M.; Tomàs, N.; Murillo, G.; Ortiz, C.; Lopes, M.S. Mid-Season Variable-Rate Algorithm for Organic and Mineral Rice Fertilization. Agron. Sustain. Dev. 2025, 45, 13. [Google Scholar] [CrossRef]
- Terentev, A.; Dolzhenko, V.; Fedotov, A.; Eremenko, D. Current State of Hyperspectral Remote Sensing for Early Plant Disease Detection: A Review. Sensors 2022, 22, 757. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Tardieu, F.; Cabrera-Bosquet, L.; Pridmore, T.; Bennett, M. Plant Phenomics, From Sensors to Knowledge. Curr. Biol. 2017, 27, R770–R783. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision Support Tools for Agriculture: Towards Effective Design and Delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef]
- Phillips, P.W.B.; Relf-Eckstein, J.A.; Jobe, G.; Wixted, B. Configuring the New Digital Landscape in Western Canadian Agriculture. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100295. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput Electron Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Aijaz, N.; Lan, H.; Raza, T.; Yaqub, M.; Iqbal, R.; Pathan, M.S. Artificial Intelligence in Agriculture: Advancing Crop Productivity and Sustainability. J. Agric. Food Res. 2025, 20, 101762. [Google Scholar] [CrossRef]
- Hossen, M.I.; Awrangjeb, M.; Pan, S.; Mamun, A. Al Transfer Learning in Agriculture: A Review. Artif. Intell. Rev. 2025, 58, 97. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Rufo, R.; Gómez-Candón, D.; Soriano, J.M.; Bellvert, J.; Yannam, V.R.R.; Gulino, D.; Lopes, M.S. Improving In-Season Wheat Yield Prediction Using Remote Sensing and Additional Agronomic Traits as Predictors. Front. Plant Sci. 2023, 14, 1063983. [Google Scholar] [CrossRef]
- Cobb, J.N.; DeClerck, G.; Greenberg, A.; Clark, R.; McCouch, S. Next-Generation Phenotyping: Requirements and Strategies for Enhancing Our Understanding of Genotype-Phenotype Relationships and Its Relevance to Crop Improvement. Theor. Appl. Genet. 2013, 126, 867–887. [Google Scholar] [CrossRef]
- Fiorani, F.; Schurr, U. Future Scenarios for Plant Phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Agenjos-Moreno, A.; Rubio, C.; Uris, A.; Simeón, R.; Franch, B.; Domingo, C.; Bautista, A.S. Strategy for Monitoring the Blast Incidence in Crops of Bomba Rice Variety Using Remote Sensing Data. Agriculture 2024, 14, 1385. [Google Scholar] [CrossRef]
- Beegum, S.; Hassan, M.A.; Ramamoorthy, P.; Bheemanahalli, R.; Reddy, K.N.; Reddy, V.; Reddy, K.R. Hyperspectral Reflectance-Based High Throughput Phenotyping to Assess Water-Use Efficiency in Cotton. Agriculture 2024, 14, 1054. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Segarra, J.; Rezzouk, F.Z.; Aparicio, N.; Kefauver, S.C.; Araus, J.L. In-Field Phenotyping Using the Low-Cost and Open Access Fluorescence PhotosynQ Multispeq Sensor Together with NDVI: A Case Study with Durum Wheat. Agriculture 2025, 15, 385. [Google Scholar] [CrossRef]
- Kim, E.; Kim, S.Y.; Lee, C.H.; Kim, S.; Ryu, J.; Kim, G.H.; Lee, S.K.; Kim, G. Advanced 3D Depth Imaging Techniques for Morphometric Analysis of Detected On-Tree Apples Based on AI Technology. Agriculture 2025, 15, 1148. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, J.; Chen, G.; Jiang, L.; Zhan, H.; Deng, H.; Long, Y.; Lan, Y.; Wu, B.; Xu, H. An Intelligent Field Monitoring System Based on Enhanced YOLO-RMD Architecture for Real-Time Rice Pest Detection and Management. Agriculture 2025, 15, 798. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Sun, J.; Yu, T.; Cai, Z.; Zhang, Z.; Mao, H. Low-Cost Lettuce Height Measurement Based on Depth Vision and Lightweight Instance Segmentation Model. Agriculture 2024, 14, 1596. [Google Scholar] [CrossRef]
- Amenyedzi, D.K.; Kazeneza, M.; Mwaisekwa, I.I.; Nzanywayingoma, F.; Nsengiyumva, P.; Bamurigire, P.; Ndashimye, E.; Vodacek, A. System Design for a Prototype Acoustic Network to Deter Avian Pests in Agriculture Fields. Agriculture 2025, 15, 10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gracia-Romero, A.; Marti-Jerez, K.; Fania, F. Leaning on Smart Agricultural Systems for Crop Monitoring. Agriculture 2025, 15, 1542. https://doi.org/10.3390/agriculture15141542
Gracia-Romero A, Marti-Jerez K, Fania F. Leaning on Smart Agricultural Systems for Crop Monitoring. Agriculture. 2025; 15(14):1542. https://doi.org/10.3390/agriculture15141542
Chicago/Turabian StyleGracia-Romero, Adrian, Karen Marti-Jerez, and Fabio Fania. 2025. "Leaning on Smart Agricultural Systems for Crop Monitoring" Agriculture 15, no. 14: 1542. https://doi.org/10.3390/agriculture15141542
APA StyleGracia-Romero, A., Marti-Jerez, K., & Fania, F. (2025). Leaning on Smart Agricultural Systems for Crop Monitoring. Agriculture, 15(14), 1542. https://doi.org/10.3390/agriculture15141542